
Design and Implementation of a Replay Framework based on a
Partial Order Planner�

Laurie H. Ihrig and Subbarao Kambhampati
Department of Computer Science and Engineering

Arizona State University, Tempe, AZ 85287
laurie.ihrig@asu.edu, rao@asu.edu

Abstract

In this paper we describe the design and implementation of
the derivation replay framework, dersnlp+ebl (Deriva-
tional snlp+ebl), which is based within a partial order
planner. dersnlp+ebl replays previous plan derivations
by first repeating its earlier decisions in the context of the
new problem situation, then extending the replayed path
to obtain a complete solution for the new problem. When
the replayed path cannot be extended into a new solution,
explanation-based learning (ebl) techniques are employed
to identify the features of the new problem which prevent
this extension. These features are then added as censors on
the retrieval of the stored case. To keep retrieval costs low,
dersnlp+ebl normally stores plan derivations for individ-
ual goals, and replays one or more of these derivations in
solving multi-goal problems. Cases covering multiple goals
are stored only when subplans for individual goals cannot
be successfully merged. The aim in constructing the case
library is to predict these goal interactions and to store a
multi-goal case for each set of negatively interacting goals.
We provide empirical results demonstrating the effective-
ness of dersnlp+ebl in improving planning performance
on randomly-generated problems drawn from a complex
domain.

Introduction
Case-based planning provides significant performance im-
provements over generative planning when the planner is
solving a series of similar problems, and when it has an
adequate theory of problem similarity (Hammond 1990;
Ihrig 1996; Ihrig & Kambhampati 1994; Veloso & Car-
bonell 1993). One approach to case-based planning is to
store plan derivations which are then used as guidance when
solving new similar problems (Veloso & Carbonell 1993).
Recently we adapted this approach, called derivational
replay, to improve the performance of the partial-order
planner, snlp (Ihrig & Kambhampati 1994). Although it
was found that replay tends to improve overall performance,
its effectiveness depends on retrieving an appropriate case.

�This research is supported in part by an NSF Research
Initiation Award IRI-9210997, NSF Young Investigator Award
IRI-9457634, and ARPA/Rome Laboratory planning initiative
under grant F30602-93-C-0039 and F30602-95-C-0247. I would
like to thank Biplav Srivastava for his helpful comments.

Often the planner is not aware of the implicit features of the
new problem situation which determine if a certain case is
applicable.

Earlier work in case-based planning has retrieved pre-
vious cases on the basis of a static similarity metric
which considers the previous problem goals as well as
the features of the initial state which are relevant to the
achievement of those goals (Kambhampati & Hendler 1992;
Ihrig & Kambhampati 1994; Veloso & Carbonell 1993). If
these are again elements of the problem description then
the case is retrieved and reused in solving the new problem.
Usually the new problem will contain extra goal condi-
tions not covered by the case. This means that the planner
must engage in further planning effort to add constraints
(including plan steps and step orderings) which achieve
the conditions that are left open. Sometimes an extra goal
will interact with the covered goals and the planner will
not be able to find a solution to the new problem without
backtracking and retracting some of the replayed decisions.
In the current work we treat such instances as indicative
of a case failure. We provide a framework by which a
planner may learn from the case failures that it encounters
and improve its case retrieval.

In this paper, we present the derivation replay framework,
dersnlp+ebl, which extends dersnlp, a replay system
for a partial-order planner, by incorporating explanation-
based learning (ebl) techniques for detecting and explain-
ing analytical failures in the planner’s search space. These
include methods for forming explanations of search path
failures and regressing these explanations through the plan-
ning decisions in the failing paths (Kambhampati, Katukam,
& Qu 1996). Here we employ these techniques to construct
reasons for case failure, which are then used to annotate the
failing cases to constrain their future retrieval. Furthermore,
each failure results in the storage of a new case which repairs
the failure. dersnlp+ebl normally stores plan derivations
solving single input goals. When a case fails in that it can-
not be extended to solve extra goals, a new multi-goal case
is stored covering the set of negatively interacting goals.
dersnlp+ebl thus builds its case library incrementally in
response to case failure, as goal interactions are discovered
through the course of problem solving.

In (Ihrig & Kambhampati 1995), the potential effective-

STORE REPLAY / EXTEND

skeletal
 plan

final
 plan

final
 plan

null
 plan

null
 plan

Figure 1: Schematic characterization of derivation storage
and replay. Each time that a plan is derived, the decisions
contained in the plan derivation (shown as the filled circles
to the left of the figure) are stored as a sequence of
instructions (shown as open rectangles) which are used
to guide the new search process. The guidance provided
by replay is considered successful if the skeletal plan
that replay produces can be extended (by the addition of
constraints) into a solution to the new problem. If replay has
been successful, the skeletal plan lies on the new derivation
path leading to the solution.

ness of this approach was evaluated in an empirical study
which compared the replay performance of dersnlp+ebl
both with and without failure information. In this paper, we
demonstrate overall performance improvements provided
by multi-case replay when a case library is constructed on
the basis of replay failures. In the next section, we describe
dersnlp+ebl which implements derivation replay within
the partial-order planner, snlp.

Derivation Replay in Partial-Order Planning
Whenever dersnlp+ebl attempts a new problem, and
achieves a solution, a trace of the decisions that fall on the
derivation path leading from the root of the search tree to
the final plan in the leaf node is stored in the case library.
Then, when a similar problem is encountered, this trace is
replayed as guidance to the new search process. Figure 1
illustrates the replay of a derivation trace. dersnlp+ebl
employs an eager replay strategy. With this strategy,
control is shifted to the series of instructions provided by
the previous derivation, and is returned to from-scratch
planning only after all of the valid instructions in the trace
have been replayed. This means that the plan which is
produced through replay, called the skeletal plan, contains
all of the constraints that were added on the guidance of
the previous trace. When the skeletal plan contains open
conditions relating to extra goals not covered by the case,
further planning effort is required to extend this plan into a
solution for the new problem.

In the current work replay success and failure is defined
in terms of the skeletal plan. Replay is considered to fail
if the skeletal plan cannot be extended by the addition of
further constraints into a solution for the new problem (See
Figure 2). In such instances, the planner first explores the
failing subtree underneath the skeletal plan, then recovers
by backtracking over the replayed portionof the search path.

 -depth limit
e2

e1

e3

final
 plan

skeletal
 plan

X

X

X

X

null
 plan

Figure 2: A replay failure is indicated when a solution to the
new problem can be reached only by backtracking over the
skeletal plan, which now lies outside the new plan derivation
(shown as filled circles). Explanations are constructed for
the failing plans in the leaf nodes of the subtree directly
beneath the skeletal plan, and are regressed up the search
tree and collected at the root to become the reason for case
failure.

Replay failure usually results in poor planning performance
since, over and above the cost of the search effort, it entails
the additional cost of retrieving a trace from the library, as
well as the cost of validating each of the decisions in the
trace. This means that when replay fails and the planner
has to backtrack over the skeletal plan performance may be
worse than in from-scratch planning.

When a case fails, and the planner goes on to find a new
solution, the final plan that it reaches does not contain some
of the constraints that are present in the skeletal plan. The
new derivation path which leads from the root of the search
tree to the final plan in the leaf node thus avoids (or repairs)
the failure encountered in replaying the old case. Consider
a simple example taken from the logistics transportation
domain of (Veloso & Carbonell 1993). Figure 3a illustrates
the solution to a simple problem drawn from this domain.
The goal is to have package OB1 located at the destination
location ld. The package is initially at location l1. There
is a plane located at lp which can be used to transport the
package. A previous plan which solves this problem will
contain steps (shown by the curved arrows in Figure 3a)
that determine the plane’s route to the destination airport as
well as steps which accomplish the loading of the package
at the right place along this route. This plan may be readily
extended to load and unload extra packages which lie along
the same route. However, if the new problem involves
the additional transport of a package which is off the old
route, the planner may not be able reach a solution without
backtracking over some of the previous step additions. The
new plan shown in Figure 3b contains some alternative
steps that achieve the goal covered by the previous case.
The plane takes a longer route which means that the plan
may be readily extended to solve the extra goal.
dersnlp+ebl detects that a previous case has failed

when all attempts to refine the skeletal plan have been tried,
and the planner is forced to backtrack over this plan. At this
point, the planner has already constructed an explanation

lp

l1

l2

ld

OB1

(a) Previous Case

lp

l1

l2

ld

OB2

(b) New Problem with
Extra Goal

Figure 3: An example of plan failure. The plan derived
in an earlier problem-solving episode is shown in (a).
This plan accomplishes the transport of a single package,
OB1, to the destination airport ld. Replay fails for a new
problem, whose solution is illustrated in Figure (b). The
new problem contains an extra goal which involves the
additional transport to ld of a second package, OB2, which
is initially located off the previous route.

for the skeletal plan’s failure (which becomes the reason
for case failure). This explanation is incrementally formed
with each path failure experienced in the subtree rooted at
the skeletal plan. Each analytical failure that is encountered
is regressed through the decisions in the failing path and
the regressed path failure explanations are collected at the
root of the search tree to form the reason for case failure.
An example of a case failure reason is shown in Figure 4.
It gives the conditions under which a future replay of the
case will again result in failure. These conditions refer to
the presence in the new problem of a set, C, of negatively
interacting goals, as well as some initial state conditions,
contained in E . A summary of the information content of
the failure reason is: There is an extra package to transport
to the same destination location, and that package is not at
the destination location, is not inside the plane, and is not
located on the plane’s route.

Since replay merely guides the search process (without
pruning the search tree), a replay failure does not affect the
soundness or completeness of the planning strategy. After
backtracking over the skeletal plan, the planner continues
its search, and will go on to find a correct solution to the
full problem if one exists. This new solution achieves all of
the negatively interacting goals identified in the case failure
reason. Moreover, since the interacting goals represent a
subset of the new problem goals, the new derivation may
be used to construct a new repairing case covering only
these goals. The repairing case is indexed directly beneath
the failing case so as to censor its retrieval. In the future,
whenever the failure reason holds, the retriever is directed
away from the case that experiences a failure and toward
the case that repairs the failure.

We are now in a position to describe how the planner
learns the reasons underlying a case failure. Specifically,
we use EBL techniques to accomplish this learning. In
the next section, we show how the techniques developed
in (Kambhampati, Katukam, & Qu 1996) are employed to
construct these reasons.

Case Failure Explanation:

C = fh(AT-OB OB1 ld); tGi
h(AT-OB OB2 ld); tGig

E = fhtI ; (:AT-OB OB2 ld)i
htI; (:INSIDE-PL OB2 ?PL)i
htI; (:AT-OB OB2 l1)i
htI; (:AT-OB OB2 lp)ig

Figure 4: An example of a case failure reason

Learning from Case Failure
dersnlp+ebl constructs reasons for case failure through
the use of explanation-based learning techniques which
allow it to explain the failures of individual paths in the
planner’s search space. A search path experiences an
analytical failure when it arrives at a plan which, because
it contains a set of inconsistent constraints, cannot be
further refined into a solution. EBL techniques are used
to form explanations of plan failures in terms of these
conflicting constraints (Kambhampati, Katukam, & Qu
1996). dersnlp+ebl constructs explanations for each of
the analytical failures that occur in the subtree beneath the
skeletal plan1.

Since a plan failure explanation is a subset of plan con-
straints, these explanations are represented in the same
manner as a partial plan. dersnlp+ebl represents its par-
tial plans as a 6-tuple, hS;O;B;L; E ; Ci, where (Barrett &
Weld 1994): S is the set of actions (step-names) in the plan,
each of which is mapped onto an operator in the domain
theory. S contains two dummy steps: tI whose effects are
the initial state conditions, and tG whose preconditions are
the input goals, G. B is a set of codesignation (binding) and
non-codesignation (prohibited binding) constraints on the
variables appearing in the preconditionsand post-conditions
of the operators which are represented in the plan steps,
S. O is a partial ordering relation on S, representing the
ordering constraints over the steps in S. L is a set of causal
links of the form hs; p; s0i where s; s0 2 S. A causal link
contains the information that s causes (contributes) p which
unifies with a precondition of s0. E contains step effects,
represented as hs; ei, where s 2 S. C is a set of open
conditions of the partial plan, each of which is a tuple hp; si
such that p is a precondition of step s and there is no link
supporting p at s in L.

The explanation for the failure of the partial plan contains
a minimal set of plan constraints which represent an incon-
sistency in the plan. These inconsistencies appear when
new constraints are added which conflict with existing con-
straints. dersnlp makes two types of planning decisions,
establishment and resolution. Each type of decision may
result in a plan failure. For example, an establishment

1Depth limit failures are ignored. This means that the failure
explanations that are formed are not sound in the case of a depth
limit failure. However, soundness is not crucial for the current
purpose, since explanations are used only for case retrieval and
not for pruning paths in the search tree.

Type : ESTABLISHMENT Type : ESTABLISHMENT
Kind : NEW STEP Kind : NEW LINK
Preconditions : Preconditions :
hp0; s0i 2 C hp0; s0i 2 C
Effects : Effects :
S 0 = S [fsg O0 = O [fs � s0g
O0 = O [fs � s0g B0 = B [unify(p; p0)
B0 = B [unify(p; p0) L0 = L [fhs; p; s0ig
L0 = L [fhs; p; s0ig C0 = C � fhp0; s0ig
E = E [effects(s)
C0 = C � fhp0; s0ig
[preconditions(s)

Figure 5: Planning decisions are based on the current
active plan hS;O;B;L; E ; Ci and have effects which alter
the constraints so as to produce the new current active plan
hS0;O0;B0;L0; E 0; C0i.

decision makes a choice as to a method of achieving an
open condition, either through a new plan step, or by adding
a causal link from an existing step (See Figure 5). When an
attempt is made to achieve a conditionby linking to an initial
state effect, and this condition is not satisfied in the initial
state, the plan then contains a contradiction. An explana-
tion for the failure is constructed which identifies the two
conflicting constraints: h;; ;; ;; fhtI; p; sig; fhtI;:pig; ;i.

As soon as a plan failure is detected and an explanation
is constructed, the explanation is regressed through the
decisions in the failing path up to the root of the search tree.
In order to understand the regression process, it is useful
to think of planning decisions as STRIPS-style operators
acting on partial plans. The preconditions of these operators
are specified in terms of the plan constraints that make up a
plan flaw, which is either an open condition or, in the case
of a resolution decision, is a threat to a causal link. The
effects are the constraints that are added to the partial plan
to eliminate the flaw.

Each of the conflicting constraints in the failure expla-
nation is regressed through the planning decision, and the
results are sorted according to type to form the new regressed
explanation. As an example, consider that a new decision,
df , adds a link from the initial state which results in a failure.
The explanation, e1, is: h;; ;; ;; fhtI; p; sig; fhtI;:pig; ;i
When e1 is regressed through the final decision, df , to
obtain a new explanation, d�1

f (e1), the initial state ef-
fect regresses to itself. However, since the link in the
explanation was added by the decision, df , this link re-
gresses to the open condition which was a precondition
of adding the link. The new explanation, d�1

f (e1), is
therefore h;; ;; ;; ;; fhtI;:pig; fhp; sigi. The regression
process continues up the failing path until it reaches the
root of the search tree. When all of the paths in the subtree
underneath the skeletal plan have failed, the failure reason
at the root of the tree provides the reason for the failure of
the case. It represents a combined explanation for all of
the path failures. The case failure reason contains only the
aspects of the new problem which were responsible for the
failure. It may contain only a subset of the problem goals.

Also, any of the initial state effects that are present in a leaf
node explanation, are also present in the reason for case
failure. The next section describes how case failure reasons
are used to build the case library.

Library Organization
A large complex domain means a great variety in the
problems encountered. When problem size (measured in
terms of the number of goals, n) is large, it is unlikely that
a similar n-goal problem will have been seen before. It
is therefore an advantage to store cases covering smaller
subsets of goals, and to retrieve and replay multiple cases
in solving a single large problem. In implementing this
storage strategy, decisions have to be made as to which goal
combinations to store. Previous work (Veloso & Carbonell
1993) has reduced the size of the library by separating
out connected components of a plan, and storing their
derivations individually. Since dersnlp+ebl is based on
a partial order planner, it can replay cases in sequence and
later add step orderings to accomplish the merging of their
subplans. It therefore has a greater capability of reducing
the size of the library, since it may store smaller problems.
In the current work, we store multi-goal cases only when
subplans for individual goals cannot be merged to reach a
full solution.

With this aim in mind, we have implemented the fol-
lowing deliberative storage strategy. When a problem is
attempted which contains n goals, a single goal problem
containing the first goal in the set is attempted and, if
solved, the case covering this goal alone is stored in the
library. Multi-goal problems to be stored are solved incre-
mentally by increasing the problem size by one goal at a
time. For example, if the problem just attempted solved
goals G = hg1; g2; :::; gii through a decision sequence Di

then a second decision sequence, Di+1, is stored whenever
Di cannot be successfully extended to achieve the next goal
gi+1. When this occurs, the explanation of replay failure is
used to identify a subset of input goals that are responsible
for the failure. A new derivation is produced which solves
only these negatively interacting goals. This derivation is
then stored in the library. Whenever the next goal in the
set is solved through simple extension of the previous de-
cision sequence, no case is stored which includes that goal.
This means that each new case that is stored corresponds
to either a single-goal problem or to a multi-goal problem
containing negatively interacting goals. Moreover, all of
the plan derivations stored from a single problem-solving
episode are different in that no decision sequence stored in
the library is a prefix of another stored case.

This strategy drastically reduces the size of the library.
It means that goals that interact positively in that they can
be solved through one or more common steps are stored
individually in single cases. Goals that are negatively
interacting (in that solving one means having to alter
the solution to the other) are stored together as multi-
goal cases. The more experience that the planner has in
problem-solving, the more of these multi-goal cases are
discovered and stored, and the less likely it is that the

G 0
 AT-OB (OB1 ld)

G 1
derivation 1

 r1

G 2

G 3

initial conditions:

failure reasons: r2

G 4

AT-OB(OB1 l1)AT-PL (PL1 lp) AT-PL(PL1 lq)

derivation 2

derivation 3 derivation 4

input goals:

Figure 6: Local organization of the case library.

planner has to backtrack over its replayed paths. The aim
is to store a minimum number of cases such that all of
the problems encountered in the future may be achieved
through sequential replay of multiple stored cases.

Multi-goal cases are indexed in the library so as to censor
the retrieval of their corresponding single-goal subprob-
lems. The discrimination net depicted in Figure 6 indexes
one fragment of the case library. This fragment includes
all of the cases which solve a single input goal. Individual
cases which solve this goal are represented one level lower
in the net. Each case is indexed by its relevant initial state
conditions. When one of these cases is retrieved for replay
and the case fails, the alternative derivation corresponding
to the additional interacting goal is added to the library and
indexed directly under the failing case so as to censor its
future retrieval. Before the case that experienced a failure is
retrieved again, the retriever checks whether the extra goals
responsible for the failure are present under the same initial
conditions. If so, the retrieval process returns the alternative
case containing these extra goals. The case failure reason is
thus used to direct retrieval away from the case which will
repeat a known failure, and towards the case that avoids it.

Multi-case replay can result in a lower quality plan if
care is not taken to avoid redundancy in step addition.
When derivations for positively-interactinggoals are stored
individually, replaying each case in sequence may result
in superfluous steps in the plan. When the first retrieved
derivation is replayed, none of its replayed step additions
will result in redundancy. However, when subsequent goals
are solved through replay of additional cases, some step
additions may be unnecessary in that there are opportunities
for linking the open conditions they achieve to earlier
established steps.

We solved this problem and obtained shorter plans by
increasing the justification for replaying a step addition
decision. In order to take advantage of linkingopportunities,
before replaying a new step addition, the replay process
takes note of any links which are currently available but
were not present in the previous case. When new linking
opportunities are detected, the decision to add a new step is
rejected. After replay, the new links are explored through
the normal course of plan refinement. This careful screening
of the step addition decisions improves the quality of plans
in terms of the number of steps they contain. The next

0

20

40

60

120

Figure 7: Replay performance in the logistics transportation
domain. The cumulative CPU time (in secs) on problem
sets of increasing problem size (1 to 6 goals) is plotted for
each level of training (0 to 120 training problems solved).
The insert shows total CPU time on all of the 6 test sets
after increasing amounts of training

section describes an empirical study demonstrating the
performance improvements provided by multi-case replay.

Empirical Evaluation
Experimental Setup: We tested the improvement in
planning performance provided by multi-case replay on
problems drawn from the logistics transportation domain
(Veloso & Carbonell 1993). Problem test sets increasing in
problem size were randomly generated from this domain.
The initial state of each problem described the location of 6
packages, and 12 transport devices (6 planes and 6 trucks)
within 6 cities, each containing a post office and an airport.
See (Ihrig 1996) for similar tests on larger problems in a 15
city domain.

The experiments were run in six phases. At the start
of each phase n the library was cleared and thirty test
problems, each with n goals, were randomly generated.
The planner was then repeatedly tested on these problems
after increasing amounts of training on randomly generated
problems of the same size. During training, problems
were solved and their plan derivations were stored as
described above. Multi-goal problems were stored only
when retrieved cases failed. In these instances the failure
information was used to extract the subset of input goals
responsible for the failure, and a case which solved these
goals alone was stored in the library.
Experimental Results: The results are shown in Figure 7
and 8. Figure 7 plots replay performance measured as the
cumulative CPU time taken in solving the 30-problem sets
tested in the 6 phases of the experiment. The figure plots
replay performance (including case retrieval time) for the
various levels of training prior to testing. For example, level
0 represents planning performance after no training. Since
in this instance the case library is empty, level 0 represents
from-scratch planning on the problem test set. Level 20
represents testing after training on 20 randomly generated

5

3

1

5

3

1

Figure 8: Percentage of test problems solved with the time
limit (500 sec) is plotted for 30-problem test sets containing
problems of 1, 3 and 5 goals. This percentage increased
with training (0 to 120 training problems solved). The
insert shows the corresponding increase in the size of the
case library.

problems of the same size as the test set. The results
indicate that this relatively small amount of training pro-
vided substantial improvements in planning performance.
Moreover, performance improved with increased levels of
training. The improvements provided by multi-case replay
more than offset the added cost entailed in retrieving and
matching stored cases.

Figure 8 reports the percentage of test problems solved
within the time limit which was imposed on problem solv-
ing. It shows how training raised the problem-solving
horizon, particularly in the later phases of the experiment
when larger problems were tested. Storing cases on the
basis of case failure kept the size of the library low (see
insert, Figure 8) and retrieval costs were minimal. In the
next section, we discuss the relationship to previous work
in case storage and retrieval.

Related Work and Discussion
The current work complements and extends earlier treat-
ments of case retrieval (Kambhampati & Hendler 1992;
Veloso & Carbonell 1993). Replay failures are explained
and used to avoid the retrieval of a case in situations where
replay will mislead the planner. Failures are also used to
construct repairing cases which are stored as alternatives to
be retrieved when a similar failure is predicted.

CHEF (Hammond 1990) learns to avoid execution-time
failures by simulating and analyzing plans derived by
reusing old cases. In contrast, our approach attempts to
improve planning efficiency by concentrating on search
failures encountered in plan generation. We integrate re-
play with techniques adopted from the planning framework
provided by snlp+ebl (Kambhampati, Katukam, & Qu
1996). This framework includes methods for constructing
conditions for predicting analytical failures in its search
space.

EBL techniques have been previously used to learn from

problem-solving failures (Kambhampati, Katukam, & Qu
1996; Minton 1990; Mostow & Bhatnagar 1987). However,
the goal of EBL has been to construct generalized control
rules that can be applied to each new planning decision.
Here we use the same analysis to generate case-specific
rules for case retrieval. Rather than learn from all failures,
we concentrate on learning from failures that result in
having to backtrack over the replayed portion of the search
path. As learned information is used as a censor on retrieval
rather than as a pruning rule, soundness and completeness
of the EBL framework are not as critical. Furthermore,
keeping censors on specific cases avoids the utility problem
commonly suffered by EBL systems.

Conclusion
In this paper, we described a framework for a case-based
planning system that is able to exploit case failure to
improve case retrieval. A case is considered to fail in a new
problem context when the skeletal plan produced through
replay cannot be extended by further planning effort to
reach a solution. EBL techniques are employed to explain
plan failures in the subtree directly beneath the skeletal
plan. These failure explanations are then propagated up the
search tree and collected at the root. The regressed plan
failures form the reason for case failure which is used to
censor the case and to direct the retriever to a repairing
case. Our results provide a convincing demonstration of the
effectiveness of this approach.

References
Barrett, A., and Weld, D. 1994. Partial order planning: evaluating
possible efficiency gains. Artificial Intelligence 67:71--112.
Hammond, K. 1990. Explaining and repairing plans that fail.
Artificial Intelligence 45:173--228.
Ihrig, L., and Kambhampati, S. 1994. Derivation replay for
partial-order planning. In Proceedings AAAI-94.
Ihrig, L., and Kambhampati, S. 1995. An explanation-based
approach to improve retrieval in case-based planning. In Current
Trends in AI Planning: EWSP ’95. IOS Press.
Ihrig, L. 1996. The Design and Implementation of a Case-based
Planning Framework within a Partial Order Planner. Ph.D.
Dissertation, Arizona State University.
Kambhampati, S., and Hendler, J. A. 1992. A validation
structure based theory of plan modification and reuse. Artificial
Intelligence 55:193--258.
Kambhampati, S.; Katukam, S.; and Qu, Y. 1996. Failure
driven dynamic search control for partial order planners: An
explanation-based approach. Artificial Intelligence. To Appear.
Minton, S. 1990. Quantitative results concerning the utility of
explanation-basedlearning. In Artificial Intelligence, volume 42,
363--392.
Mostow, J., and Bhatnagar, N. 1987. Failsafe: A floor planner
that uses ebg to learn from its failures. In Proceedings IJCAI-87,
249--255.
Veloso, M., and Carbonell, J. 1993. Toward scaling up machine
learning: A case study with derivational analogy in prodigy.
In Minton, S., ed., Machine Learning methods for planning.
Morgan Kaufmann.

