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ABSTRACT

As robotic technology and its various uses grow steadily mocemplex and ubiqui-
tous, humans are coming into increasing contact with robatiagents. A large portion
of such contact is cooperative interaction, where both huma and robots are required
to work on the same application towards achieving common gea These application
scenarios are characterized by a need to leverage the stitaisgof each agent as part
of a unied team to reach those common goals. To ensure that the robotic agent
is truly a contributing team-member, it must exhibit some dgree of autonomy in
achieving goals that have been delegated to it. Indeed, a sigant portion of the
utility of such human-robot teams derives from the delegatin of goals to the robot,
and autonomy on the part of the robot in achieving those goaldn order to be con-
sidered truly autonomous, the robot must be able to make itswn plans to achieve
the goals assigned to it, with only minimal direction and asstance from the human.

Automated planning provides the solution to this problem { irdeed, one of the
main motivations that underpinned the beginnings of the all of automated planning
was to provide planning support for Shakey the robot with the BRIPS system. For
long, however, automated planners su ered from scalabpitissues that precluded
their application to real world, real time robotic systems.Recent decades have seen a
gradual abeyance of those issues, and fast planning systeans now the norm rather
than the exception. However, some of these advances in spgednd scalability have
been achieved by ignoring or abstracting out challenges theeal world integrated
robotic systems must confront.

In this work, the problem ofplanning for human-hobot teamings introduced. The
central idea { the use of automated planning systems asediators in such human-
robot teaming scenarios { and the main challenges inspired from real workdenarios

that must be addressed in order to make such planning seandeme presented: (i)



Goals which can be speci ed or changed at execution time, aftthe planning process
has completed; (ii) Worlds and scenarios where the state aiges dynamically while a
previous plan is executing; (iii) Models that are incomplet and can be changed during
execution; and (iv) Information about the human agent's pla and intentions that
can be used for coordination. These challenges are compoethdby the fact that the
human-robot team must execute in ampenworld, rife with dynamic events and other
agents; and in a manner that encourages the exchange of imf@tion between the
human and the robot. As an answer to these challenges, implemted solutions and
a elded prototype that combines all of those solutions intmne planning system are
discussed. Results from running this prototype in real watlscenarios are presented,

and extensions to some of the solutions are o ered as appra@ie.
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Chapter 1

INTRODUCTION

One of the earliest motivations for Arti cial Intelligence (Al) as a eld of study was
to provide autonomous control to robotic agents that carry ot useful service tasks.
The concept ofteaming between humans and robots is central to many of these ap-
plications { the notion of robotic agents that support a huma agent's goals while
executing autonomously is a recurring theme in Al. Over the @& decade, the elds
of robotics and Human-Robot Interaction (HRI) have exhibitedremendous progress,
both within the laboratory as well as out in the real world. Sch progress has nat-
urally made the issue of teaming between humans and robotigents an inevitable
reality. Teaming is bene cial to all parties involved: humas can delegate both me-
nial and dangerous tasks to robotic agents, while the roboteemselves can benet
from the vast store of untapped information that humans cagr in their heads. This
symbiotic relationship (Rosenthalet al., 2010) renders human-robot teams invalu-
able in applications ranging from military combat to urban econnaissance (Murphy,
2004), household management (Cirillet al., 2010) and even space missions (Knight
et al., 2001). However, it is still the case that humans and robots epate with com-
pletely di erent models and representations of the same widr (and scenario). The
human-robot team may share common goals, but the individuagents' means of
achieving those goals, and reasoning about the world in whi¢hey must achieve
them, di er greatly. If robots are to form e ective teams with humans, they must
function as other humans do in human-human teams. Bridgindhts chasm between
the agents { while keeping an eye on progress towards the aitate ful lIment of the

scenario objectives { requires a mediatory mechanism on thebot that can generate
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autonomous behaviors while taking into account the varioushanges thrown up by a
dynamic world.
Consider the following motivating example:

A human commander is in a safe location and in remote contactitty
an autonomous robot that is making its way through a damageduilding
that is also on re. The goal of the human-robot team is to lookfor
and report on any injured people that are found in the buildig, thus
facilitating their rescue. Although the robot is initially equipped with
a model of the domain, the model is { of necessity { incompleteFor
example, the commander may not be sure of the condition of vaus parts
of the building, and thus cannot completely describe the pcenditions /
e ects of even simple actions like pushing the door open. Thaitial
guidance from the commander is to nd and report any injured pople,
and get out of the building before it collapses. We note thateaither the
human nor the robot knowa priori the exact locations of the injured
people. We also note that the goal of reporting on injured pete, and
that of getting out of the building, are con icting. Itis not always possible
for the human commander to specify the exact fashion in whidb resolve
the trade-o. As the robot is making its way through the building, the
mission evolves, and the human commander might relay chasge the
world (e.g. a speci ¢ wing of the building has already colleged), the goals
(e.g. the robot should also stop by at a rendezvous point at a&rtain
time), and even actions (e.g. new ways of prying open a damageoor,
that is not already present in the robots model, or changes the level of
incompleteness in various actions). The robot needs to takkeese changes

into stride, while respecting its commitments to the team.



The level of autonomy that is desired of robotic agents inveéd in such teaming
scenarios with humans is often achievable only by integrag them with automated
planning systems { systems that can not only plan for initid} speci ed goals, but also
updates to these goals as well as changes to the world and te hgent's capabilities.
Predetermined scripts and contingency trees do not (and caot) account for all
the possibilities that a real-world application scenario tings with it; instead, the
planning process must be as autonomous as possible, in aiditto being able to
accept new input (both from the world and from other agents)and plan with that
new information.

The broad aim of this thesis is to understand the challengeaded by a planner
that guides a robot in such HRT scenarios, and to develop e gge frameworks for
handling those challenges. Typical reactive robotic ardeictures are inadequate in
such scenarios since they come with hard-wired implicit gga Instead, teaming
robots require more explicit planning components that canake new requirements
and directives into consideration. While there has been someork on deliberative
decision-making for human-robot teams, much of it focusesr automating either
path planning decisions (c.f. (Alamiet al., 2006; Kulc and Croft, 2005)) or task-
assignment decisions (c.f. (Ho man and Breazeal, 2010; Qloi et al., 2009)) with
the human taking an operator role. E ective HRT, such as the oa sketched in
the rescue scenario above, requires full- edged action plang on the robot's part {
involving sub-goaling, managing sensing actions, and raphing in the presence of
commitments. At the same time, the traditional planning franeworks are themselves
inadequate as they ignore the humans in the loop, and assun@mplete knowledge
of models and objectives. Finally, pure learning-based amaches that attempt to
rst learn the complete models before using them are not wedluited, as the robot

does not have the luxury of waiting until the models become owlete.



Automated planning systems have been successfully employedhe guidance and
control of robotic agents from the very inception of both etls (Fikes, 1971; Fikes
and Nilsson, 1972). The idea that robotic agents need to be ewded with autonomy
is not new { from depictions in popular culture to actual depbyed agents, robots
are assumed to be autonomous and independent in many crucvedys. However,
as highlighted above, it is thelevel and extent of this autonomy that is constantly
changing. Where Shakey, the rst truly autonomous robot to beealized, had access
only to a minuscule set of actions! the latest robotic agents can enact complex tasks
robustly, or interact with humans with a high degree of delty. As robots (and the
systems that control them) grow increasingly robust and e&s to manage, the nal
barrier remains natural, everyday interaction with humans Central to progress on
this is the development of planning systems that lend themises to features required
for enhanced HRT. Additionally, the scale-up that is requiredo support real world
applications and time windows has only happened in the pasedade due to the use
of heuristic search methods for plan synthesis. Current plaers still operate under
a number of restrictive assumptions though, with classicgllanners (Kambhampati
and Srivastava, 1995) being the fastest of the lot.

The problem lies in identifying the features that are esseial when considering
planning support for joint HRT problems, and of providing a geeral framework for
such planning challenges. The teaming aspect of these prabk arises from the fact
that the human and the robot are both acting towards achievig the same set of
shared goals, and the relationship between them can be dedé terms of known
modes of interactions in teams (e.g. peers, commander-sttinate, etc.). Though

there has been work in the past on the intersection of tasksviolving humans, robots

1Shakey couldn't even physically implement some of these actions, @uto a lack of appropriate
e ectors.



and planners, most of that work has concentrated on a systeoentric view of the
interaction. Our focus in this work is instead on the larger blem of interaction
between the human and the robot, and on describing the plamyg challenges that
arise from such interaction. These challenges stem bothfndhe long-term nature of
teaming tasks, and the open- world nature of the environmentThe main problems
involve the ability to deal with incompletely speci ed modés, uncertain objectives in
open and dynamically changing worlds, and the ability to hastle continual updates

to the world, the objectives and even the domain models.
1.1 Contributions of the Thesis

In this section, the main contributions of this dissertatio are presented. The
central theme that unites all of these contributions is the se of human-robot teaming
as a motivating application scenario to demonstrate the shicomings of existing

classical planners and the classical planning paradigm.

1.1.1 Open World Goals

All human-robot teams are constituted in the service of specigoals { either at a
higher, abstract level (e.g. \humans must be rescued") or awer, more de ned level
(e.g. \deliver medboxi1to room3). It makes little sense then to assume that these
goals will remain static, or that they will all be speci ed upfront at the beginning of
each scenario. Instead, a exible framework is required th# expressive enough to
denote most goals of interest, yet one that allows modi catns (including addition
and deletion) to goals with relative ease. Additionally, therepresentation used by
these goals must be on a level that humans are comfortable i too high and no
goals of relevance can be de ned; too low and humans will fdese track of what the

team is trying to achieve.



Human-robot teaming tasks present an additional critical cillenge not handled
by current planning technology:open worlds Simply put, an open world is one where
new objects, and facts about them, may be discovered at anyrie during execution.
Most human-robot teaming tasks involve open world scenas@nd require the ability
to handle knowledge that may be counterfactual, and goals @ may be contingent
on that knowledge. While the state-of-the-art planners areery e cient, they focus
mostly on closed worlds. Speci cally, they expect full knoledge of the initial state,
and expect up-front speci cation of the goals. Adapting thento handle open worlds
presents many thorny challenges. Three tempting but ultimtaly awed approaches
for making closed-world planners handle open worlds are) flindly assuming that
the world is indeed closed; (ii) deliberately \closing" theworld by acquiring all the
missing knowledge before planning; or (iii) accounting foall contingencies during
planning by developing conditional plans.

Assuming a closed-world will not only necessitate frequengplanning during ex-
ecution, but can also lead to highly suboptimal plans in the nesence of conditional
goals (such a plan would, for example, direct the robot in theSAR scenario to make
a bee-line to the end of the corridor, merrily ignoring all te conditional reward op-
portunities of reporting on injured people whose existengg not known beforehand).
Acquiring full knowledge up-front would involve the robot ding a sensing sweep to
learn everything about its world before commencing the plang { a clearly infeasi-
ble task. After all, a robot cannot be simply commanded to \sese everything," but
rather has to be directed to speci c sensing tasks.

What is needed instead is both a framework for specifying caitidnal knowledge
and rewards, and an approach for using that knowledge to datthe robot in such a
way as to intelligently trade sensing costs and goal rewardaccordingly, an approach

for representing and handling a class of conditional goalalled open world quanti ed



goals (OWQGS) is proposed in Chapter 3. OWQGs provide a compact wayf spec-
ifying conditional reward opportunities over an \open" setof objects. For instance,
using OWQGs, it can be speci ed that for a robot to report an ifjured human, it must
have found an injured human and that nding an injured human nvolves sensing. It
will be shown how OWQGs foreground the trade-o between seing costs and goal
rewards. Discussion will also center around the issues ifwed in optimally selecting
the conditional rewards to pursue, and on describing the apgximate \optimistic"

method that is used in the current approach.

1.1.2 Changing Worlds

Planning for HRT requires handling dynamic objectives and eironments. Such
tasks are characterized by the presence of highly complex¢omplete, and sometimes
inaccurate speci cations of the world state, the problem gkctives and even the model
of the domain dynamics. These discrepancies may come up doefdctors like plan
executives, or other agents that are executing their own pia in the world. Due to
this divergence, even the most sophisticated planning algthms will eventually fail
unless they o er some kind of support for replanning. Theseydamic scenarios are
non- trivial to handle even when planning for a single agent,ub the introduction of
multiple agents introduces further complications. All thes agents necessarily operate
in the same world, and the decisions made and actions taken &y agent may change
that world for all the other agents as well. Moreover, the vaous agents' published
plans may introduce commitments between them, due to sharedsources, goals or
circumstances.

For example, in a human-robot teaming scenario, the goalssagned by the com-
mander are commitments that the robotic agenmust uphold. Additionally, if the

agent tells the human that it is executing a speci ¢ plan, or ehieving a speci ¢ goal,



then it cannot simply change the execution of that plan or theursuit of that goal

(respectively) without rst informing the human that it is b reaking the commitment.
These inter-agent commitments may evolve as the world it§ethanges, and may in
turn a ect the robotic agent's internal planning process.

Given the importance of replanning in dealing with all thesessues, one might
assume that the single-agent planning community has studid¢te issues involved in
depth. Unfortunately, most previous work in the single-agerplanning community
has looked upon replanning as gechniquewhose goal is to reduce the computational
e ort required in coming up with a new plan, given changes tohe world. The focus
in such work is to use the technique of minimally perturbingtte current plan struc-
ture as a solution to the replanning problem. However, neitheeducing replanning
computation nor focusing on minimal perturbation are apprpriate techniques for
intra-agent replanning in the context of multi-agent scenaos.

In Chapter 4, an argument is provided for a better, more genarmodel of the re-
planning problem as applicable to planning problems that irolve the plans and goals
of multiple agents, such as human-robot teaming. This modebnsiders the central
components of a planning problem { the initial state, the sebf goals to be achieved,
and the plan that does that, along withconstraints imposed by the execution of that
plan in the world { in creating the new plan. These replanningonstraints take the
form of commitments for an agent, either to an earlier plan ahits constituent actions,
or to other agents in its world. It is shown that this general aommitment sensitive
planning architecture subsumes past replanning technigsi¢hat are only interested
in minimal perturbation. It is also shown that partial satisfaction planning (PSP)

techniques provide a good substrate for this general moddlreplanning.



1.1.3 Evolving Models

As automated planning systems move into the realm of humanirot teaming
tasks, a recurring issue is that of incompletely speci ed daain theories. These
shortcomings manifest themselves as reduced robustnesplans that are synthesized,
and subsequent failures during execution in the world. It nyabe the case in many
scenarios that though plan synthesis is performed using ammal domain model,
there are domain experts who specify changes to the speci coplem instance and
sometimes the domain model itself during the planning pross. Quite often it is
useful to take this new information into account, since it mg help prevent grievous
execution failures when the plan is put into action. Additiomlly, new information
about the domain or the problem may open up new ways of achiag the goals
speci ed, thus resulting in better plan quality as well as me robust plans.

More generally, it may be the case in many HRT scenarios that dlugh plan
synthesis is performed using a nominal domain model, thereeadomain experts who
specify changes to the speci c problem instance and someémthe domain model
itself during the planning process. Quite often it is usefulttake this new information
into account, since it may help prevent grievous executioraifures when the plan is
put into action. Additionally, new information about the domain or the problem
may open up new ways of achieving the goals speci ed, thus uésg in better plan
guality as well as more robust plans.

To handle such information, two things are of essence: rsi semantics is needed
for specifying such updates and integrating them into the knowledge base tie
planner that is guiding the agent. Subsequent to this, the pblem changes to one
of reasoning about the changes and their e ect on the current plan's valitly and

metrics. In Chapter 5, the problem of updates to a domain modtevhile a plan is



actively executing in the world is presented. Based on pri@xperience in providing
planning support to a robotic agent in a search and rescue seeio, the nature of
the updates that need to be supported are described, and thensponents of such an

update are demonstrated.

1.1.4 Coordination Through Plan & Intent Recognition

As robotic systems become more ubiquitous, the need for tedhogies to facilitate
successful coordination of behavior in human-robot team&bomes more important.
Speci cally, robots that are designed to interact with humas in a manner that is as
natural and human-like as possible will require a variety of sophisticated cognit
capabilities akin to those that human interaction partnergpossess. Performing mental
modeling, or the ability to reason about the mental states ofnother agent, is a
key cognitive capability needed to enable natural human-bmt interaction. Human
teammates constantly use knowledge of their interaction pmers' belief states in
order to achieve successful joint behavior, and the procest ensuring that both
interaction partners have achievedcommon ground with regard to mutually held
beliefs and intentions is one that dominates much of task- bad dialogue. However,
while establishing and maintaining common ground is esséadtfor team coordination,
the process by which such information is utilized by each agigto coordinate behavior
is also important. A robot must be able to predict human behawer based on mutually
understood beliefs and intentions. In particular, this cagbility will often require
the ability to infer and predict plans of human interaction @rtners based on their
understood goals.

In Chapter 6, the focus of the discussion is shifted from theadel of the robotic
agent to the model of the human agent who is part of the humarebot team. Auto-

mated planning is a natural way of generating plans for an agegiven that agent's
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high-level model and goals. The plans thus generated can Hetight of either as
directives to be executed in the world, or as the culminatioof the agent's delibera-
tive process. When an accurate representation of the agentisliefs about the world
(the model and the state) as well as the agent's goals are dahie, an automated
planner can be used t@roject that information into a prediction of the agent's future
plan. This prediction process can be thought of as a simplegpl recognition process;
further in that chapter, the expansion of this process to ifade incomplete knowledge

of the goals of the agent being modeled will be discussed.

1.1.5 Broader Contributions & Implications

In addition to the main contributions described above, the ark done as part of
this dissertation also resulted in some broader contribuins to the community. Here,

some of those contributions are listed.

Applying Automated Planning to HRT

Most integrated systems that tried to control robotic agens in the past have relied
on scripts to inform the agent's behavior in a dynamic world§chank and Abelson,
1977). As the scenario being handled grows increasingly maanplex, and the po-
tential for unforeseen events and faults increases, scsgend to get larger, unwieldier,
and less able to deal with contingencies. Instead, a systeimat can exhibit robust
intelligenceis the need of the hour; robust intelligence can be de ned akd capacity
of a system to \ensure the reliable, long-term, fault-toleant autonomy and survival
of the robot" (Scheutzet al., 2007a). Automated planning systems can adroitly gen-
erate such autonomous behaviors, and respond to unexpeciknts in the world
by generating new plans { all the while keeping the overall g¢s at the forefront of

the deliberative process. Recent advances in the eld of aurhated planning have
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focused variously on replanning when faced with executioailure and a world state
that di ers from the planner's expected state (Foxet al., 2006; Yoonet al., 2007; Ta-
lamadupulaet al., 2013b), by generating an alternate path to the goals. Veryecent
work has even focused on the possibility that the planner's adel may be incom-
pletely speci ed (Kambhampati, 2007), leading to a measuref robustnessfor plans
generated under various incomplete models (Nguyest al., 2013) (see Section 1.1.5

for a continuation of this discussion).

Planning with Incompleteness

Although state-of-the-art automated planning systems haverogressed signi cantly
in terms of scalability, e ciency, and representational cpabilities, most of them still
model the world asclosed and complete with respect to changes once the planning
process begins; that is, little attention is given to the facthat a problem may either
be incomplete, or may change, after planning has commencaddaring execution.
As discussed previously, HRT tasks present a critical challga not handled by
current planning technology: open worlds While the state-of-the-art classical plan-
ners are very e cient, they focus mostly on closed worlds. Sei cally, they expect
full knowledge of the initial state, and expect up-front spa cation of the goals of
the agent, respectively. Additionally, current planners ao assume that the agent's
action model is static and complete. Adapting them to handlepen worlds presents
many problems. A critical challenge in doing this is the neetb get by with less
than complete information about the preferences and world odel of the agent {
something that most current planners assume at the outset. HE absence of com-
plete models motivates anodel-lite planning problem (Kambhampati, 2007), where
the planning model can exhibit varying degrees of incomplatess. The extent of the

planner's contribution in the plan generation process depds on the level of detail
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and completeness of its model. Given su ciently detailed formation on the form
of the incompleteness { for example, annotations on the inepleteness (Satia and
Lave Jr, 1973; Garland and Lesh, 2002) { the planner can use array of increas-
ingly sophisticated techniques to generate plans that haxehigher chance of success
in the world. These techniques include plan critiquing, sudoal generation, replan-
ning (Cushing and Kambhampati, 2005), robust planning (Ngwn et al., 2013), and
diverse planning (Nguyeret al., 2012).

Human-in-the-Loop Planning

In recent years, there has been increasing realization fromthin the automated
planning community that planning techniques are well-suéd for applications where
humans and automated systems must work together. However,rydittle attention
has been focused on the challenges that existing planningti@iques must negotiate in
order to be useful in sucthuman-in-the-loop(HIL) planning scenarios. A large part of
this has been due to the absence of a uni ed consideration @ig problem. One of the
academic contributions of this dissertation is thus to graud the challenges involved
in this larger problem by using human-robot teaming as a matating application.
The consideration of human-robot teaming as a human-in-tdeop problem also
enables a separation of the high-level challenges that a pier must solve in such
scenarios in a more de ned form. Speci cally, the challengeare two-fold. First, the
planner must solve aninterpretation problem in order to understand the objectives,
preferences, and actions of the human(s) in the scenario.c8ed, the planner must
solve thesteering problem, and determine the best course of action (which mayh
always be a full and complete plan) that will contribute to a god solution. In ad-
dition to the work on human-robot teaming presented here, 1B understanding has

been applied to the problem otrowdsourced planningIn that problem, the robotic
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agent is replaced with acrowd of human workers, who must work with another human
agent called therequesterin order to collaboratively produce a plan for a problem
speci ed by the requester. The planner must act as a mediatan such scenarios to
make the plan generation process more e cient; that is, in adition to scheduling
actions suggested by the crowd workers, the planner must n@lso interpret their
actions and throw out automated suggestions and alerts thahay be used to steer
the crowd's planning process. This problem, introduced in @amadupulaet al.,
2013a) and detailed in (Talamadupula and Kambhampati, 20)3was used to con-
struct a working prototype of a crowdsourced planning syste. This system, called
Al-MIX (Manikonda et al., 2014a), was demonstrated at the ICAPS 2014 conference's
systems demonstration track, where it was awarded the bestwoho award (Manikonda
et al.,, 2014b).

The work that will be presented in the succeeding chapters saesulted in multiple
publications at conferences and workshops, and in journgdlsee References); and will
appear as a signi cant part of a tutorial entitted "Human-inthe-Loop Planning and

Decision Support' at the AAAI 2015 conference.
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Chapter 2

RELATED WORK

This chapter outlines work that is related to the human-robbteaming problem,
and to the automated planning challenges related to that pidem.

2.1 Human-Robot Teaming

There has been a resurgent interest in robotic applicatiorend Arti cial Intelli-
gence systems that support them in the past decade. Vast havdre scale-ups as well
as widespread deployment in real world applications and pilacts has meant that
a large amount of work { both past and present { is relevant to he human-robot
teaming problem. Perhaps the most relevant of all these is éhwork on symbiotic
human-robot interaction (Rosenthalet al., 2010), which considers the symbiotic rela-
tionship between a human and a robotic agent in a teaming sao. This work has
been extended in many interesting directions { some of whichd echo in this work
{ including in modeling the availability and accuracy of hunans who interact with
mobile robots (Rosenthalet al., 2011), seeking help from humans (Rosenthal and
Veloso, 2012; Rosenthat¢t al., 2012), using web interfaces to assign tasks to these
robots (Samadiet al., 2012; Kollar et al., 2012), dialog-based task management for
robots (Sunet al., 2013), and replanning based on dynamic information receid from
the world (Coltin and Veloso, 2013).

There is also a large volume of work that is related to variouaspects of the
human-robot teaming problem. There has been work on devigirgeneralized archi-
tectures and infrastructures for distributed human-robotteams (Scerriet al., 2003;

Schurr et al., 2005). Additionally, as shown in Figure 2.1, other previousavk can be
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HUMAN

Human Robot Interaction
(HRI)

Mixed Initiative Planning
(MIP)

ROBOT PLANNER

Planning and Execution
Monitoring

Figure 2.1: Interactions between the various roles in a human-robot te@ng sce-
nario.

classi ed into three parts based on the aspects of the HRT prédim that it addresses {
human-robot interaction, human-planner interaction, andplanner-robot interaction.

More speci cally:

Planning and execution monitoring deals with the interacbns between a fully

autonomous robot and a planner.

Human-Robot Interaction (HRI) works toward smooth interactons between a

human user and a robot.

Mixed initiative planning relates to interactions betweenhumans who are re-

ceiving plans and the automated planners that generate them

Since the focus of this work is on providing planning suppofor human-robot
teams, the most interesting work is that which relates planng and execution moni-
toring to mixed initiative planning. A lot of work has been dme in both these areas,
and their intersection; the closest work seems to be Bagchi &.'s (Bagchi et al.,
1996) system for controlling service robots. In their syste, the robot is equipped to
handle the user's changing goals and advice at di erent lelgeof detail via a planner

that can re ne and modify goals dynamically. The emphasis dheir work is on the
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robotic agent's capability to not only plan and act autonomasly, but also to do so in
an interactive way such that the user's comfort and safety are kept in mind.nlorder
to achieve this, the robot is equipped to comprehend the use(changing) goals and
advice at di erent levels of detail. In turn, the planner canre ne and modify these
goals dynamically and react to unexpected changes in the @émnment. This system
thus includes the human user in the loop via interaction witlthe robot and a prob-
abilistic planner. There has also been work on how humans @mact with planners,
and how the process of accepting user input can be streambindn particular, work

by Myers (Myers, 1996, 1998) has dealt withdvisable planninghat allows a human
to specify partial plans, recommendations or methods to duate plan quality, all in

natural language.

There has been signi cant work in planning and execution matoring, often in
the context of replanning and contingent planning. Contingnt planners (c.f. (Albore
et al., 2009; Meuleau and Smith, 2003)) can be viewed as solving the problem
of execution monitoring by assuming full sensing knowledgg available at execution
time, so no replanning would ever be necessary. However, ast Gaat, 1992) has
pointed out, in designing a planner whose ultimate goal is ding plans for execu-
tion, it is di cult (and sometimes impossible) to model for al contingencies, and
often it is better to design an execution monitoring systemhiat is capable of recog-
nizing failures (i.e.,cognizant failures(Firby, 1989)). That is, the planner's problem
can berelaxed by removing uncertainty in the world. Agre and Chapman (Agre ad
Chapman, 1990) also discuss these issues in relationshipptanning and execution
monitoring and viewing \plans as advice". A number of systes (c.f. (Lemai and
Ingrand, 2003; Knightet al., 2001; Myers, 1998)) have worked by performing execu-
tion monitoring and subsequentplan repair or replanning upon the discovery of an

inconsistent execution state. For instance, the CASPER plarer (Knight et al., 2001)
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performs plan repair upon failure. While the IxTeT-eXeC (Lemeand Ingrand, 2003)
system attempts a similar repair strategy, it replans onlyfino repair can be found.
It handles the arrival of new goals through replanning.

On the “planners interacting with humans' side, there haveden some planning
systems that work toward accepting input from users. In partular, work by My-
ers (Myers, 1996) has dealt speci cally witladvisable planningdi.e., allowing a human
to specify partial plans, recommendations of goals and aetis, or methods to evalu-
ate plan quality; all in natural language). TheContinuous Planning and Execution
framework, also developed by Myers (Myers, 1998), contatheuch a framework al-
lowing natural language advice. This system provided for @h execution monitoring
and initiated plan repairs when necessary (though appears have never handled fully
open world scenarios). Another system that relies on high-e advice from a human
is TRAINS-95 (Fergusonet al., 1996). This system engages the human in a dialog,
explicitly eliciting advice from the user and asking for thdest way to complete tasks

at the high level, while the planner engages in planning ugjrmore primitive actions.

2.2 Open World Goals

Handling an open environment using a closed world planner hasdn considered
before, notably in the work of Etzioni et al. (Etzioniet al., 1997) via the speci -
cation of local closed-world(LCW) statements. However, there exists at least one
major di erence between their work and the present work in ogn, dynamic worlds.
It should be noted that the representation used in that workpf closing a world that
is open otherwise via the local closed world (LCW) statementss complementary to
representations that are used in this work. The approach irhts work is to provide
support for open world quanti ed goals byrelaxing the planner's assumption of a

world closed with respect to object creation; that is, partof a completely closed-
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world are beingopenedwith the aid of OWQGs. This approach provides a method of
specifyingconditional goals where goal existence hinges upon the truth value of facts.
Semantics of goals involving sensing have received attemtiin (Scherl and Levesque,
1993) and (Golden and Weld, 1996). The latter work is partidarly relevant as they
consider representations that leads to tractable planninggnd propose three anno-
tations initially , hands-o and satisfy to specify goals involving sensing. There has
been signi cant work on \temporal goals" (Baralet al., 2001; Bacchus and Kabanza,

1996), and \trajectory constraints" (Gerevini et al., 2009).

2.3 Changing Worlds

Automated Planning

Replanning has been an early and integral part of automatedgmning and problem
solving work in Al. The STRIPS robot problem-solving systemFKikes et al., 1972),
one of the earliest applications of planning and Al, used an esgution monitoring
system known as PLANEX to recognize plan failures in the worldand replan if
direct re-execution was not an option. The replanning mech&sm worked by sending
the change in state back to the STRIPS system, which returnealsequence of actions
that brought the state back to one from which the execution ahe original plan could
be resumed.

The relatively simple procedure behind the STRIPS system eaded an idea that
would come to dominate replanning work within the planning ammunity for the
next few decades { the notion ocommitment to a plan The principle underlying
the concept of minimally changing an existing plan is chrished planstability by Fox
et al. (Fox et al., 2006). In that work, two approaches { replanning from scrah,

and repairing the existing plan { and their respective impas on plan stability are
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considered. Stability itself is de ned as the measure of thai erence a process induces
between an original plan and a new plan, and is closely reldté& the idea ofminimal
perturbation planning (Kambhampati, 1990) used in past replanning and plan re-
use (Nebel and Koehler, 1995) work. Fox et al. argue that platedility as a property
is desirable both from the standpoint of measurable quanigs like plan generation
time and plan quality, as well as intangibles like the cognite load on human observers
of planned activity and the strain on the plan executive.

Other work on replanning has taken a strong stand either for@gainst the idea of
plan repair. Van Der Krogt et al. (Van Der Krogt and De Weerdt,2005) fall rmly
into the former category, as they outline a way to extend statof-the-art planning
techniques to accommodate plan repair. For the purposes difig work, it su ces to
note that this work looks at the replanning problem as one ofotmmitment to and
maintenance of a broken plan. This work has a strong paralléhnd precursor) in
planning for autonomous space exploration vehicles, a pesvreal world application
of planning technology. The Casper system (Knightt al., 2001), which was designed
to autonomously control a spacecraft and its activities, wadesigned as a system with
a high level of responsiveness, enabled through a techniquedled iterative repair {
an approach that xes aws in an existing plan repeatedly unt an acceptable plan is
found. At the other end of the spectrum, Fritz et al. (Fritz and Mcllraith, 2007) deal
with changes to the state of the world by replanning from scteh. Their approach
provides execution monitoring capabilities by formalizig notions of plan validity and
optimality using the situation calculus; prior to executio, each step in the (optimal)
plan is annotated with conditions that are su cient for the plan's optimality to hold.
When a discrepancy or unexpected change occurs during exéanf these conditions
are re-evaluated in order to determine the optimality of thexecuting plan. When one

of the conditions is violated, the proposed solution is to cee up with a completely
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new plan that satis es the optimality (or validity) conditi ons.

Multi-Agent Systems

In contrast, the multi-agent systems (MAS) community has loked at replanning is-
sues more in terms of multiple agents and the con icts that caarise between these
agents when they are executing in the same dynamic world. Waey et al. (Wagner
et al., 1999) proposed the twin ideas ohter-agentand intra-agent con ict resolution.
In the former, agents exchange commitments between each @thn order to do team
work. These commitments in turn may a ect an agent's local adroller, and the
feasibility of the agent's individual plan { this brings up the process of intra-agent
con ict resolution. Inter-agent commitments have been vaously formalized in di er-
ent work in the MAS community (Komendaet al., 2008; Bartold and Durfee, 2003;
Wooldridge, 2000), but the focus has always been on the insetions between the
various agents, and how changes to the world a ect the deckd commitments. The
impact that these changes havavithin an agent's internal planning process has not
received signi cant study. The closest work in the multi-agnt planning community
to this work is by (Komendaet al., 2012), where the multi-agent plan repair prob-
lem is introduced and reduced to the multi-agent planning mblem; and (Meneguzzi
et al.,, 2013), where a rst-order representation and reasoningdenique for modeling
commitments is introduced.

In this work (in Chapter 4), it is proposed to bring these two aproaches from two
di erent communities { single-agent planning, and multi-ggent systems { together
in a uni ed theory of agent replanning. The central arguments that it should be
the single-agent planning community's brief to heed the cinges to the world state
and inter-agent commitments, and to generate a new (singégent) plan that remains

consistent with the larger multi-agent commitments in the wrld. The rst step in this
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endeavor is to re-de ne the replanning problem such that bbatsingle and multi-agent

commitments can be represented under a uni ed framework.
2.4 Coordination Using Mental Models

Robots that are designed to interact with humans in a mannerht is asnatural
and human-like as possible will require a variety of sophisticated cognit capabilities
akin to those that human interaction partners possess (Salz et al., 2007b). Per-
forming mental modeling, or the ability to reason about the rantal states of another
agent, is a key cognitive capability needed to enable natdrAuman-robot interac-
tion (Scheutz, 2013). Human teammates constantly use knowllge of their interac-
tion partners' belief states in order to achieve successfigint behavior (Klein et al.,
2005), and the process of ensuring that both interaction parers have achievedom-
mon groundwith regard to mutually held beliefs and intentions is one tht dominates
much of task-based dialogue (Clark and Brennan, 1991). Hovezywhile establishing
and maintaining common ground is essential for team coordition, the process by
which such information is utilized by each agent to coordirta behavior is also impor-
tant. A robot must be able to predict human behavior based on atually understood
beliefs and intentions. There has been a variety of prior woiin developing coordina-
tion and prediction capabilities for human-robot interacton in joint tasks involving
physical interaction, such as assembly scenarios (Kwon aiaih, 2012) and object
hand-overs (Strabalaet al., 2013). However, these scenarios assume the robot is in
direct interaction with the human teammate and is able to ob=ve the behavior of
the human interactant throughtout the task execution. Somdorms of coordination
may need the robot to be able to predict a teammate's behavifnom only a high-level

goal and mental model, as outlined in Chapter 6.
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Chapter 3

OPEN WORLD GOALS

Robots operating in teaming scenarios require the abilityot plan (and revise)
a course of action in response to human instructions. The iz of this chapter
is on understanding the challenges faced by a planner thatigas a robot in such
teaming scenarios speci ¢ to the scenario goals. Severaltgaof the state-of-the-art
planning technology that go beyond typicaklassical planningare both required and
easily adapted to goals in human-robot teaming scenarios particular, the planner
should allow for actions with durations to handle goals witldeadlines and the reality
that actions take time execute in the physical world, and paial satisfaction of goals
should be possible to allow the planner to \skip" seeminglynreachable goals (e.g.,
if the goal of exiting a building cannot be currently satis @, that should not prevent
the robot from reporting on injured humans). For partial saisfaction planning, soft
goals are modeled (i.e., goals that may remain unachievedjtiwa reward and a
cost is given to each action; the planner then seeks to nd agt with maximum
net benet (i.e., summed goal reward - summed action cost). Along with #se, an
important part of any online system is execution monitoringand replanning to allow
the planner to receive and react to new information from a huan commander (e.qg.,
a change in goal deadline). To accept information from a humacommander, the
robotic architecture parses and processes natural langeafi.e., speech) into goals or
new facts. If the architecture cannot handle a goal or fact bfpllowing a simple script
located in its library, it calls the planner to nd a method of achieving the goal.

Human-robot teaming tasks present an additional critical cillenge not handled

by current planning technology: open worlds Simply put, an open world is one
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where new objects, and facts about them, may be discovered aty time during
execution. Open worlds are related to thelosed world assumptioq the assumption
that anything that is not explicitly mentioned is automatically assumed to be false.
Most human-robot teaming tasks involve open world scenas@nd require the ability
to handle knowledge that may be counterfactual, and goals @ may be contingent
on that knowledge. For example, a human commander might irsict the robot to
report on any injured humans it encounters in a search-anescue scenario. Here the
world is open in that neither the human nor the robot know whes injured humans
are, or even if there are any to begin with (hence the goal doast actually exist
until an injured human is found).

While the state-of-the-art planners are very e cient, they focus mostly on closed
worlds. Speci cally, they expect full knowledge of the initl state, and expect up-front
speci cation of the goals. Adapting them to handle open worklpresents many thorny
challenges. Three tempting but ultimately awed approache for making closed-
world planners handle open worlds are: (i) blindly assumintipat the world is indeed
closed; (ii) deliberately \closing” the world by acquiringall the missing knowledge
before planning; or (iii) accounting for all contingencieduring planning by developing
conditional plans.

Assuming a closed-world will not only necessitate frequeneplanning during ex-
ecution, but can also lead to highly suboptimal plans in the nesence of conditional
goals (such a plan would, for example, direct the robot in theSAR scenario to make
a bee-line to the end of the corridor, merrily ignoring all te conditional reward op-
portunities of reporting on injured people whose existengg not known beforehand).
Acquiring full knowledge up-front would involve the robot ding a sensing sweep to
learn everything about its world before commencing the plang { a clearly infeasi-

ble task. After all, a robot cannot be simply commanded to \sese everything," but
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rather has to be directed to speci ¢ sensing tasks. Accoungiifor missing knowledge
would involve making conditional plans to handle every typef contingency, and let-
ting the robot follow the branches of the plan that are consient with the outcomes

of its sensing. Such full contingency planning is already kwn to be impractical in

propositional worlds with bounded indeterminacy (c.f. (Maleau and Smith, 2003));
it is clearly infeasible in open worlds with unknown numbersf objects, of (possibly)
unknown types.

What is needed instead is both a framework for specifying catidnal knowledge
and rewards, and an approach for using that knowledge to daethe robot in such
a way as to intelligently trade sensing costs and goal reward Accordingly, an ap-
proach for representing and handling a class of conditiongbals calledopen world
guanti ed goals (OWQGS) is proposed. OWQGs provide a compact way of specifg
conditional reward opportunities over an \open" set of objets. For instance, using
OWQGs, it can be speci ed that for a robot to report an injuredhuman, it must
have found an injured human and that nding an injured human nvolves sensing. It
will be shown how OWQGs foreground the tradeo between semgj costs and goal
rewards. Discussion will also center around the issues ifwexd in optimally selecting
the conditional rewards to pursue, and on describing the apgximate \optimistic"
method that is used in the current approach.

3.1 Conditional Goals

There exists an obvious problem with using a planner that asswes a closed-
world in a dynamic, real-world scenario such as planning fan autonomous robot in
a human-robot team { because the world is \open", the robot @well as the human)
does not have full knowledge of all the objects in the worldnlan urban search and

rescue (USAR) scenario, for example, neither the human nor tmebot know where
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injured humans might be. Furthermore, it is also possible #t the human-robot team
does not have a complete or correct map of the building in wii¢he rescue is taking
place. One immediate rami cation of this \open world" is tha the goals are often
conditioned on particular facts whose truth value may be umown at the initial state.

For example, the most critical goal in a search and rescue Ba€o { viz. reporting

the locations of injured humans { is conditioned on nding ijured humans in the
rst place.

In open worlds like the USAR scenario, there may be a set of objgethat imply
these facts of interest. For instance, when moving throughe hallway, it could be
said that sensing a door implies the existence of a room. Sabsently, doors imply
the potential for goal achievement (i.e., opportunities foreward), since they imply
the existence of a room, where injured people might be siteat. While the number
of possible injured individuals remains unknown, the commaer becomes aware that
people are likely within rooms (and subsequently passes gshinformation on to the
robot). This goal is over an open world, in that new objects ahfacts may be brought
to light through either external sources like the mission eomander, or through action
execution and sensing.

To be e ective in such scenarios, the planner should be opponistic, generating
plans that enable goal achievement as against nding the most direct path to th
currently known goals (e.g., by entering rooms to look for jared individuals instead
of going straight to the exit). Unfortunately, there are seveal other constraints that
may preclude the achievement of goals. The robot may have diéaes to meet and
may run out of exploration time; it may also be unable to fully gplore the building
due to parts of it being inaccessible. Additionally, sensintp resolve the truth of
world-facts may often be costly and time-consuming. This na@s that certain aspects

of the world may remain open (and therefore unknown) by designecessitating the
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use ofsoft goals that do nothaveto be achieved for the plan to be valid.

To formally model the USAR robot's goal of looking for and repding injured
people, it is useful to consider the fact that this goal is ct&inly not one of simple
achievement, since the robot does not need to (and should ho¢port victims unless
they are actually present in the rooms. The uncertainty in tis scenario and other
similar real-world problems stems from the inherently contional presence of objects
{ and the truth of facts about them { in the world. Such goals ca be looked at as
conditional goals where a conditional goalA B is interpreted as \B needs to be
satis ed if A is true initially".

A planning problem is a tuple H;G;D i wherel is the initial state, G the goal
formula, and D = hV;P;Ai is the planning domain description { is a set of typed
variables, P is a set of boolean propositions, anéd is a set of PDDL 2.1 level 3 (Fox

and Long, 2003) planning operators).

Conditional Goal : A (hard) conditional goalg. w.r.t. = H;G;Di is a struc-

ture A B whereA 21 andB 2 G.

Given a planning problem = h;G;Di and a plan which satises we say
that also satis es a conditional goaA B if it makes B true in the nal state
resulting from the application of to I.

From the de nition of conditional goals above, it holds thatthe set of goals that a
plan needs to ful ll in order to be considered a solution to the prolem is variable,
and that the composition of such a set depends on the valuestioé antecedents of the
conditional goals initially (at I). It also follows that a plan °will not be considered

a solution unless it ful lls each and every conditional goal
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The conditional goal as de ned above poses a \hard" constrai if the antecedent
holds, then every solution planmust achieve the goal. It is useful to relax this re-

quirement:

Soft Conditional Goal : A (soft) conditional goal g.s w.r.t. a planning problem
= H;G;DiisastructureA BJ[u][p]whereA21 andB 2 G, andu and p

are non-negative reals.

Given that the soft conditional goal is de ned using soft gdasemantics (van den Briel
et al.,, 2004),any plan that is a solution for satis es the given soft conditional

goal carrying rewardu units and penalty p units.

Planning Spectrum for Conditional Goals

In general, it is useful consider apectrum of planning methods (as shown in gure
3.1) to deal with conditional goals, all of which are contingnt on the the observability
of the initial state | 2 . If | is fully observable, the planner knows the values of the
antecedents of all the conditional goalg, 2 G.. With this information, a problem
with conditional goals may be compiled into a standard clagsl planning problem
(in case only hard conditional goals are present) and a paatisatisfaction planning
(PSP) problem otherwise.

However, if | is partially observable, the planner is faced with a more cquex
problem. If all the conditional goals are hard (and hence mube achieved for plan
success), the planner has no option but to direct the robot teense for all the facts
that occur in the antecedents of the goals irG;, culminating in the compilation

approach mentioned previously.
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Figure 3.1: A schematic outline of methods to deal with Conditional Goal

If the conditional goals in the scenario are alboft instead ! , the planner is
confronted with an interesting problem: it must not only sese in order to establish
which of the antecedents are true in the initial state, but mat also select a subset of
these goals whose achievement will optimize the net bene thieved given the costs
and rewards of achieving the original goals and the costs eihsing for the antecedents

(the standard PSP problem).

A General Solution

The most general way of dealing with conditional goals in shca case would be

to accept knowledge on the antecedents in the form distributions, and to use a

LIf there is a mixture of hard and soft conditional goals, they can be split arml the hard conditional
goals can he handled as described previously.

29



probabilistic planner to compute the set of goals with the s expected net bene t.
As an illustration, consider the set of conditional goalsG. = fPi  Gi;P}

Gh; 1P} ' g, from which the planner must pick a set of goals to pursue. Firs
let S(GL) denote the cost of sensing the status of the conditio®]  P\g. Since the
results of sensing cannot be predicted during plan synthssito decide whether this
sensing cost will be o set by the increased net bene t, the phner has to compute the
expectednet bene t achievable. In order to do this, it needs to have (passume) some
prior knowledge on how the truth values of the antecedents PP; of the conditional
goals are jointly distributed. Let this distribution be (P ). Further, let G.nP be the
set of conditional goals that are triggered by a speci ¢ vahtion of the antecedents.
For each such valuation P, the optimal net bene t achievablby the planner isB(G,|
[G. nP]). The expected net benetis B B(G,[ [G.nP]). Thus the optimal set

of conditional goals to be sense@. is computed as:

G.=argmax Ep B(Go[ [G.nP]) S(G) (3.1)
Sl Ge

Focusing sensing this way, while optimal, can be infeasibie practice both because
of the need for distributional information, and because ofie computational cost of
computing optimal net bene t plans for each potential goal &t. Thus reasonableas-
sumptionsneed to be made on the distribution of the antecedents of threesonditional
goals.

One such assumption that may be made is that ajptimism; the planner could
assume thatall the antecedents are true in the initial state, which would rgult in all
of the conditional goals being triggered for achievemefit Under such an assumption,

the process of plan synthesis reduces to oneapitimistic determinization, where the

2Note that since the goals are soft, the planner still has to do a PSP analysis order to determine
whether it is worth pursuing them.
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partial observability of the world is resolved by assumingiif the case of the USAR
scenario) the presence of victims in all rooms that are enadgred, thus reducing
the computation required to determine the set of goals to paue. Such a strategy,
combined with the replanning that is central to this approah, is highly reminiscent
of the most-likely outcome approach adopted by FF-Replan (Yaooet al., 2007) in
dealing with stochastic actions.

A secondary bene t of optimistic determinization is that snce it ignores probabil-
ities (and instead focuses only on reward), it can be used icemarios where stochastic
information is missing, which is the case in the USAR scenariod., nothing is known
about the probability that injured individuals exist in rooms, except that it is non-
zero). For problems like these, a construct called thepen world quanti ed goalis
de ned, that enables optimistic determinization of condiional goals so that deter-

ministic planners may be used to plan for such scenarios.

3.2 Open World Quanti ed Goals

Syntax

Open world quanti ed goals (OWQG) (Talamadupulaet al., 2010b) combine informa-
tion about objects that may bediscovered during execution with partial satisfaction
aspects of the problem. Using an OWQG, the domain expert canrfush details
about what new objects may be encountered through sensingndainclude goals that
relate directly to those sensed objects.

Given a planning problem = H;G;Di with D = hVv;P;A as the planning
domain description, anopen world quantied goal (OWQG) is dened as a

tuple:
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Q=h;SP;C;Gi
whereF;S2 V; P2 P; C = Vici is a formula where eacht; 2 P; and G is a
proposition in P grounded out with constants froml .

F belongs to the object type thatQ is quanti ed over, and S belongs to the object
type about which information is to be sensedP is a proposition which ensures sensing
closure for every pairtf; si such that f is of type F and s is of type S, and both f
and s belong to the set of objects in the problemQ 2 ; for this reason, it is termed
a closure condition Eachc 2 C is a statement about the openness of the world with
respect to the variableS. Finally G is a quanti ed goal onS.

Newly discovered objects may enable the achievement of goasanting the op-
portunity to pursue reward. For example, detecting a victimn a room will allow the
robot to report the location of the victim (where having repoted accrues reward).
Given that the reward in this case is for each reported injuckperson, there exists
a quanti ed goal that must be allowed partial satisfaction.In other words, the uni-
versal base, or total grounding of the quanti ed goal on theeal world, may remain
unsatis ed while its component terms may be satis ed. To hadle this, the partial
satisfaction capability of the base planner is used.

As an example, an illustration from the USAR scenario is presesd: the robot is
directed to \report the location of all victims". This goal can be classi ed as open
world, since it references objects that do not exist yet in #aplanner's object database
O; and it is quanti ed, since the robot's objective is to repat all victims that it can
nd. In the OWQG syntax, this information is encoded as follavs:

1 (open
2 (forall ?z - zone

3 (sense ?hu - human
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(looked_for ?hu ?z)
(and (has_property ?hu injured)
(in ?hu ?2))

(:goal (reported ?hu injured ?z)

o N o o b

[100] - soft))))

In the example above, line 2 denotel, the typed variable that the goal is quan-
ti ed over; line 3 contains the typed variable Slthe object to be sensed. Line 4 is
the unground propositionP known as the closure condition (de ned earlier). Lines 5
and 6 together describe the formul& that will hold for all objects of type Sthat are
sensed. The quanti ed goal oveSis de ned in line 7, and line 8 indicates that it is
a soft goal and has an associated reward of 100 units. Of themgmonents that make
up an open world quanti ed goalQ, P is required (if P were allowed to be empty, the
planner could not gain closure over the information it is sesing for, which will result
in it directing the robot to re-sense for information that ha already been sensed for),
and F and S must be non-empty, while the others may be empty. 1G is empty,
i.e., there is no new goal to work on, the OWQ@®) can be seen simply as additional

knowledge that might help in reasoning about other goals.

Semantics

In this section, the semantics of the OWQGs (de ned previolyg) are introduced.
Consider a planning problem = H;G;Di and a given OWQGQ = hF; S;P;C; Gi.
Consider also the \ground truth" initial state of the world, W,. The planner's initial

knowledge (state) is a subset of this ground truth, i.e.:

I Wo (3.2)
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Thus the world state can be described in terms of both the grad truth, as well

as the planner's knowledge of that ground truth, as:

HWo; i (3.3)

The planner generates a plan for the problem ; let the state that results
from the application of to the initial state | be denotedl , which is the planner's
knowledge of the state that results from executing. Similarly, the ground truth

state of the world changes fronW, to W . Thus the world state becomes:

WARE (3.4)

The plan is said to satisfy the OWQG Q if both the following conditions hold:

S8E21 ;P | (3.5)

8F; S21 ;(C21 = G 1) (3.6)

The requirement to ful Il the second condition depends on tb degree of satisfac-
tion of the goal G itself; if G is a hard goal, then the conditionmust be satis ed,
whereas ifG is a soft goal instead, the condition need not be satis ed. This bears
some similarity to the semantics of hard versus soft condithal goals, as introduced
in Section 3.1.

It is more instructive to think of the set of all OWQGs Q , and the set of all

respective goal$s associated with those OWQGs:

G =fGjQ=MNH;S;P;C:Gi2Qg
Now, there are three possibilities:
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1. G contains only hard goals.
2. G contains only soft goals.

3. G contains a mixture of hard and soft goals.

For case 1, for every OWQQQ;, Equation 3.6 must hold respectively for a candi-

date plan to satisfy the set of OWQGsQ . That is:

80;20Q ;8F:S 21 ; C21 = G | (3.7)

Cases 2 and 3 are more interesting: in case 2, sirfge consists exclusively of soft
goals,any plan satis es Q . In this case, given a set of candidate plartésuch that
each 2 % the plan that results in the maximum net bene t will be picked. Using
the semantics de ned by van den Briekt al. (2004), we have:

X X xS
= arg max U(G)) + U(Gy) C(Anm) (3.8)
j k 1

where is a candidate planU( ) stands for the utility (reward) of a goal; G; G
is the set of original goals of achieved by ; Gy G is the set of OWQGs whose
goals are achieved by; A, is the set of actions that make up the plan ; C( )
stands for the cost of an actiom,; ands=j jis the number of actions in

For the semantics of the OWQGs, a candidate plan satis es the OWQG Q i

has the value de ned by the maximum value in Equation 3.8.

Case 3 can be handled as a combination of cases 1 and 2; rstygider a partition
of the set of all OWQGsG into GH which contains all the OWQGs with hard
goals, andG®S which contains all the OWQGs with soft goals. Then satisfaiin is

determined as follows:
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1. First, the set of candidate plan®4s Itered down to a set%, of only those plan

candidates that each satisfy all of the goals iG" according to Equation 3.7.

2. Second, Equation 3.8 is used with the candidate s#; and the goal setGS to

determine whether a given plan candidate satis es the OWQ®S. 3

As in case 2, a plan satis es the given OWQG i it has a value equ&o the
maximum value given by the right hand side of Equation 3.8 uret the conditions

enumerated above.

An Example

Here, it is instructive to use an example to clarify the syntaand semantics. Consider
a directive of the following nature, taken from a USAR scenarid Wounded persons
may be found inside rooms. Report the locations of all wounded persbdndhis

statement is ambiguous, and could mean one of four di erenhings:

1. Case 1: Look inside albast known rooms (and only those) for wounded persons,

and report the locations of any persons that are thus found.

2. Case 2: Look inside alfuture discovered rooms (and only those) for wounded

persons, and report the locations of any persons that are thdound.

3. Case 3: Look inside all past known rooms, as well as any treat discovered in

the future, and report the locations of any persons that arehus found.

4. Case 4. Look insidall the rooms in the building, and report the locations of

all persons inside those rooms.

3Notice that here we are merely describing the satisfaction semanticef the OWQGs. However,
were we to be interested in the auxiliary problem of nding the beg plan candidate instead, we
could get away with considering just the goal setG® in a ranking consideration since the ltering
in the rst step ensures that every remaining candidate plan achiees exactly the same set of hard
goals. This assumes that goal utility is additive, and breaks down under ertain circumstances: see
work by Do et al. (2007) for details.
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These cases can be considered in light of Statement 3.3 andt8inent 3.4. Cases
1 {3 are based only orl and| , that s, only on the planner's knowledge of the world
state. However, case 4 is di erent in that it is predicated o'Wy and W ; that is, on
the actual ground truth state of the world. OWQGs, as de ned aove, are designed
to express case 3.

The natural language statement above is interpreted to mearase 3, which can

be written in the current OWQG syntax as follows:

1 (copen
(forall ?r - room
(sense ?p - person

(looked_for ?p ?r)

(in ?p?n)

2

3

4

5 (and (has_property ?p wounded)
6

7 (cgoal (reported ?p wounded ?r)

8

[100] - soft))))

3.3 Implementation

The implementation uses the Sapa Replan (Talamadupukt al., 2010a) planner.
This planner uses the algorithm de ned by (Bentoret al., 2009) for nding the best
bene cial plan (this algorithm is reproduced from Benton egl. in Figure 3.2). That
algorithm nds a correct plan under all conditions if one sug plan exists. To handle
the open world quanti ed goals, the planner grounds the prdbm into the closed-
world using a process similar to Skolemization. More specally, runtime objectsare
generated from the sensed variablg that explicitly represent the potential existence
of an object to be sensed. These objects are marked as systamegated runtime

objects. Given an OWQGQ = hF; S; P; C; Gi, one can look atS as a Skolem function
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1 Input: A PSP problem: (I, I, G, A);
2 Qutput: A valid plan Ppg;

3 begin
.9’{” -2 Ug:
4 gel
5 | f(I)—g(I)+h(I);
6 | Bp—gll)s
7 Py — 0
8 OPEN « {I};
9 while OPEN +# |) and not interrupted do
§ «— argmax f(zx);
10 reOPEN
1 OPEN «— QPEN\ {s};
12 if h(s) = 0 then
13 | stop search;
14 else
15 foreach s’ € Successors(s) do
16 if g(s') > By then
17 Pg « plan leading from I to s";
18 Bp « g(s');
19 OPEN «— OPEN\ {s;: f(s;) < Bg};
20 end
21 if f(s") > Bp then
2 | OPEN «— OPENU {s'}
23 end
24 end
25 end
26 end
27 Return j;;
28 end

Figure 3.2: An algorithm for nding the maximum bene cial plan, from Benton
et al. (2009).

of F, and runtime objects as Skolem entities that substitute fathe function. Runtime
objects are then added to the problem and ground into the close condition P,
the conjunctive formula C, and the open world quanti ed goalG. Runtime objects
substitute for the existence ofS dependent upon the variabld=. The facts generated
by following this process ove€ are included in the set of facts in the problem through
the problem update process. The goals generated By are similarly added. This
process is repeated for every new object th&t may instantiate.

The condition P is treated as anoptimistic closure condition meaning a particular

state of the world is considered closed once the ground clasiwcondition is true.
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On every update the ground closure conditions are checkeddaif true the facts in

the corresponding ground values fron€ and G are removed from the problem. By
planning over this representation, a plan is provided thatsi executable given the
planning system's current representation of the world uritinew information can be
discovered (via a sensing action returning the closure catidn). The idea is that

the system is interleaving planning and execution in a mann¢hat moves the robot

towards rewarding goals by generating an optimistic view dhe true state of the

world.

As an example, consider the scenario at hand (in Section 3.2)daits open world
guanti ed goal. Given two known zoneszonel and zone2, the process would gen-
erate a runtime objecthuman!l Subsequently, the factghas _property human!l
injured) and(in human!l zonel) and the goal(report human!l injured zonel)
(with reward 100) would be generated and added to the proble(where the exclama-
tion mark (!) indicates a runtime object). A closure conditon (looked _for human!l
zonel) would also be created. Similarly, a runtime objechuman!2would be gener-
ated and the facts(has _property human!2 injured) and(in human!2 zone2) and
goal (report human!2 injured zone2) added to the problem, and the closure con-
dition (looked _for human!2 zone2) would be created. When the planning system
receives an update includinglooked _for human!l zonel), it will update the prob-
lem by deleting the facts(has _property human!l zonel) and(in human!l zonel)
and the goal(report human!l injured zonel) atthe appropriate time point. Sim-
ilar actions are taken when(looked _for human!2 zone2) is received. The planner
must only output a plan up to (and including) an action that will make the closure
condition true. Therefore once the condition becomes tru¢he truth values of the
facts in C are known.

In Section 3.4, the results of running the planner { augmentewith support for
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OWQGs { on a real world HRT scenario are presented, to illustta the di erence

that the use of OWQGs can make.
3.4 Empirical Evaluation

The task used to evaluate the OWQGs is the following: the robas required to
deliver essential supplies (which it is carrying) to the endf a long hallway { this is
a hard goal. The hallway has doorways leading o into rooms oeither side, a fact
that is unknown to the robot initially. When the robot encounters a doorway, it must
weigh (via the planner) the action costs and goal deadlinerfdhe hard delivery goal)
in deciding whether to pursue a search through the doorway. #ap of the scenario
is shown in Figure 3.3.

In the speci c runs described here, green boxes act as staing-for injured humans,
whereas blue boxes denote healthy people (whose locatior®ad not be reported).
The experimental setup consisted of three rooms, which arepresented a&;, R, and
R3. The roomR; contained a green box (GB), representing a victinR, contained a
blue box (BB), representing a healthy person; an&; did not contain a box* . The
respective doorways leading into the three rooni?; through Rz are encountered in
order as the robot traverses from the beginning of the hallwao its end.

The aim of these experimental runs is to demonstrate the impiance of each of
the planning components that make up this integrated systepand to showcase the
tight integration that was achieved in order to control the pbot in this scenario. To
achieve these goals, a set of experiments were conducted netieur parameters were
varied { each of which could take on one of two values { thus givg 16 di erent

experimental conditions through the scenario. The factorthat were varied were:

4Although distinguishing injured humans from healthy ones in noisy enironments is an interest-
ing and challenging problem, it is not directly relevant to the core of the work being presented and
evaluated.
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Figure 3.3: A map of the scenario in which OWQGs are evaluated; boxes inams
are stand-ins for humans, where green (at left) indicatesjured and blue (at right)
indicates normal.

1. Hard Goal Deadline: The hard goal deadline was xed at 100ntie units, re-
sulting in the runs in Table 3.1, and 200 time units to give theuns in Table

3.2.

2. Cost: Presence or absence of action costs to demonstrdie tnhibiting e ect

of costly sensing actions on the robot's search for injurecepple.
3. Reward: Presence or absence of a reward for reporting irgd people in rooms.

4. Goal Satisfaction: Label the goal of reporting injured pple as either soft or

hard, thus modulating the bonus nature of such goals.

In the tables provided, a + symbol stands for the presence ofcartain feature, while a
- denotes its absence. For example, run number 5 from Tablel 2lenotes an instance
where the deadline on the hard goal (going to the end of the hahy) was 100 time
units, action costs were absent, the open world goal of repiog people carried reward,
and this goal was classi ed as soft.

The experimental runs detailed in this section were obtaileon a Pioneer P3-AT

robot (see Figure 3.4) as it navigated the USAR scenario with thiaitial hard goal
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Figure 3.4: A Pioneer P3-AT on which the planner integration with OWQGs vas
veri ed.

of getting to the end of the hallway, while trying to accrue tle maximum net bene t
possible from the additional soft goal of reporting the loden of injured people. A
video of the robot performing these tasks, as a validation ¢he test runs, can be
viewed via the following link: http://www.youtube.com/watch?v=NEhBZ205kzc

The robot starts at the beginning of the hallway, and initialy has a plan for
getting to the end in ful liment of the original hard goal. An update is sent to the
planner whenever a doorway is discovered, and the plannetbsequently replans to
determine whether to enter that doorway. In the rst set of runs, with a deadline of
100 units on being at the end of the hallway, the robot has tim& enter only the
rst room, R; (before it must rush to the end of the hallway in order to makeftte
deadline on the hard goal).

Even with this restriction, some interesting plans are gemated. The planner
directs the robot to enterR; in all the runs except 3 and 7|this can be attributed
to the fact that there is no reward on reporting injured peom in those cases, and
the reporting goal is soft; hence the planner does not conerdt worthwhile to enter
the room and simply ignores the goal on reporting. The alereader may ask why it

is not the case that enteringR; is skipped in runs 4 and 8 as well, since there is no
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Run | Cost Reward Soft| Enter R; Report GB | Enter R, Report BB | Enter R3
1 + + + Yes Yes No No No
2 + + - Yes Yes ? ? ?
3 + - + No No No No No
4 + - - Yes Yes ? ? ?
5 - + + Yes Yes No No No
6 - + - Yes Yes ? ? ?
7 - - + No No No No No
8 - - - Yes Yes ? ? ?

Table 3.1: Results of trial runs with a deadline of 100 time units.? denotes that
there is no feasible plan from that point on that ful Is all hard goals.

reward on reporting injured people in those cases either; wever, it must be noted
that this goal is hard in cases 4 and 8, and hence the planneust plan to achieve
it (even though there may be no injured person in that room, oreward to o set the
action cost). This example illustrates the complex interdmn between the various
facets of this scenario (deadlines, costs, rewards and gsatisfaction), and shows how
the absence of even one of these factors may result in the robeing unable to plan
for opportunities that arise during execution|in this case, detecting and reporting
injured people.

When the deadline on reaching the end of the hallway is extergdiéo 200 units,
the robot is a orded enough time to enter all the rooms. In suUt a scenario, it is
expected that the robot would enter all the rooms to check fovictims, and this is
indeed what transpires, except in runs 11 and 15. In those rsinthe robot skips all
rooms for precisely the same reasons outlined above (for sud and 7)|the lack of
reward for reporting the goal, combined with the softness dlhat goal. Indeed, runs

3 and 7 are respectively identical to runs 11 and 15 save thengger deadline on the

hard goal.
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Run | Cost Reward Soft| Enter R; Report GB | Enter R, Report BB | Enter R3
9 + + + Yes Yes Yes No Yes
10 + + - Yes Yes Yes No Yes
11 + - + No No No No No
12 + - - Yes Yes Yes No Yes
13 - + + Yes Yes Yes No Yes
14 - + - Yes Yes Yes No Yes
15 - - + No No No No No
16 - - - Yes Yes Yes No Yes

Table 3.2: Results of trial runs with a deadline of 200 time units.

Another interesting observation is that in all the cases wherthe robotdoesenter
R,, it refuses to report the blue box (BB), since there is no rewd attached to
reporting blue boxes (non-victims). Since the deadline iaif enough away for runs 9
through 16, the planner never fails to generate a plan to emteooms in order to look
for injured people, avoiding the situation encountered inuns 2, 4, 6 and 8 where
there is no feasible plan that ful lls all hard goals since ta robot has run out of time
(denoted? in Table 3.1).

In terms of computational performance, the planning time tiken by the planning
system was typically less than one second (on the order of anldued milliseconds).
Our empirical experience thus suggests that the planning @cess always ends in a
speci ¢, predictable time frame in this scenario| an important property when actions
have temporal durations and goals have deadlines. Additiolhg in order to test the
scale-up of the system, it was evaluated on a problem instanwith ten doors (and
consequently more runtime objects) and it was found that tlre was no signi cant

impact on the performance.
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3.5 Limitations

While the work described in this section presents a represatiobn for a specic
class of conditional goals that a robotic agent may encoumti&n open world scenarios,
it still su ers from some limitations that are typical of application-oriented work. The
rst such limitation is the question of scalability { how well does the OWQG-centric
approach scale in comparison to other methods? Here scaldpils de ned in terms
of the problem instance size, and speci cally continuing # running example from
this chapter, in terms of the number of rooms in a given map ahar the number of
objects that must be searched for and reported.

A related question concerns the use of probabilities to spicthe likelihood of
certain relations holding, or certain events occurring (foe.g. the likelihood that an
injured human will be found in a room). While the OWQGs as presged cannot
handle probabilitiy distributions, the conditional goals (which are a more general
solution) are certainly equipped to deal with probabilistt information on the distri-
bution of objects in the scenario. Fortunately, work by Joshet al. (Joshiet al., 2012)
has explored this very problem, down to an integration with he sameDIARCarchi-
tecture used to evaluate the OWQGs (see Section 7.3.1). An atiohal advantage is
that Joshi et al.'s evaluation also considers the issue of &maility as the size of the
problem instance increases.

Finally, a major limitation of the OWQG approach is that it fails to consider
the various complexities and problems inherent in recogimg high-level objects from
noisy sensor feedback on a robot. For example, in the USAR scaoathe current
approach just assumes that the planner will be informed by thDIARCarchitecture
when a door appears. In reaity, this is a very big approximain, and much work has

focused on the problem of object detection for robots (Oraba et al., 2005).
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Chapter 4

CHANGING WORLDS

Many tasks require handling dynamic objectives and enviroments. Such tasks
are characterized by the presence of highly complex, incolefe, and sometimes in-
accurate speci cations of the world state, the problem obgives and even the model
of the domain dynamics. These discrepancies may come up doefdctors like plan
executives, or other agents that are executing their own pia in the world. Due
to this divergence, even the most sophisticated planninggarithms will eventually
fail unless they o er some kind of support for replanning. Tase dynamic scenarios
are non-trivial to handle even when planning for a single age but the introduction
of multiple agents, such as in a human-robot teaming scenar{the human and the
robot are both considered agenrts of interest here) introdes further complications.
All these agents necessarily operate in the same world, andetdecisions made and
actions taken by an agent may change that world for all the o#r agents as well.
Moreover, the various agents' published plans may introdeccommitments between
them, due to shared resources, goals or circumstances.

For example, in a human-robot teaming scenario, the goalssagned by the com-
mander are commitments that the robotic agenmust uphold. Additionally, if the
agent tells the human that it is executing a speci ¢ plan, or ehieving a speci ¢ goal,
then it cannot simply change the execution of that plan or theursuit of that goal
(respectively) without rst informing the human that it is b reaking the commitment.
Matters get more complicated with the addition of more indepndent agents that
may be pursuing their own respective plans and goals, and magpt necessarily be

co-operative or controlled by the same entity. The need fanter-agent replanningin
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terms of commitments is understood in the multi-agent systes (MAS) community
(c.f. Section 2.3). However, these inter-agent commitmentsay evolve as the world
itself changes, and may in turn a ect a single agent's intera planning process.

Given the importance of replanning in dealing with all thesessues, one might
assume that the single-agent planning community has studiethe issues involved
in depth. This is particularly important given the di erence between agency and
execution, and the real-world e ectors of those facultiesa single agent need not
necessarily limit itself to planning just for itself, but can generate plans that are
carried out by multiple executors in the world. Unfortunatey, most previous work
in the single-agent planning community has looked upon repining as atechnique
whose goal is to reduce the computational e ort required inaning up with a new
plan, given changes to the world. The focus in such work is tos@ the technique
of minimally perturbing the current plan structure as a soltion to the replanning
problem. However, neither reducing replanning computationor focusing on minimal
perturbation are appropriate techniques for intra-agenteplanning in the context of
multi-agent scenarios.

In this chapter, an argument is presented for a better, moreegeral, model of
the replanning problem as applicable to planning problemsat involve the plans
and goals of multiple agents, such as human-robot teaming. hif model considers
the central components of a planning problem { the initial sate, the set of goals
to be achieved, and the plan that does that, along witltonstraints imposed by the
execution of that plan in the world { in creating the new repla. These replanning
constraints take the form of commitments for an agent, eithheto an earlier plan
and its constituent actions, or to other agents in its world. It will be shown that
this general commitment sensitive planning architectureubsumes past replanning

techniques that are only interested in minimal perturbatio { the \commitment" in
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such cases is to the structure of the previously executingapl. It will also thus result
that partial satisfaction planning (PSP) techniques provile a good substrate for this
general model of replanning.

In the next section, the formulation of the replanning prol@m used in this work
is presented in terms of the problem instance (composed oftimitial state and the
goals), the plan to solve that particular instance, and the ebendencies or constraints
that are introduced into the world by that plan, and three mocls associated with
the handling of thesereplanning constraints that are de ned in that formulation.
Subsequently, the composition of those constraints is examd in more detail, and
the various solution techniques that can be used to satisfihése constraints while
synthesizing a new replan are discussed. This chapter dissas and builds on work
that was presented in (Talamadupuleet al., 2014b).

4.1 The Replanning Problem

It is posited that replanning should be viewed not as a techgue, but as aproblem
in its own right { one that is distinct from the classical plaming problem. Formally,
this idea can be stated as follows. Consider a plans that is synthesized in order
to solve the planning problemP = H;Gi, wherel is the initial state and G, the
goal description. The world then changes such that the prodain to be solved is now
P%= H % GY, wherel °represents the changed state of the world, ar@a changed set
of goals (possibly di erent fromG). The replanning problemis then de ned as one
of nding a new plan ¢ that solves the problemP? subject to a set of constraints

P. 1 By \subject to", it is implied that the nal state produced by the (re)plan

9 must entail the constraints in the constraint set *. This model is depicted in

Figure 4.1. The composition of the constraint set °, and the way it is handled, can

1These constraints are de ned in the next section.
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be described in terms of speci enodelsof this newly formulated replanning problem.

Here, three such models are presented based on the manner incilihe set ° is

populated.

1. M; j Replanning as Restart: This model treats replanning as “piaing from
restart' { i.e., given changes in the worldP = h;Gi! P%= h%GY, the old
plan p is completely abandoned in favor of a new plan which solvesP®

Thus the previous plan induces no constraints that must be spected, meaning

that the set * is empty.

Figure 4.1: A model of replanning

2. M, j Replanning to Reduce Computation: When the state of the worlfbrces
a change from a plan » to a new one 2, in the extreme case, 3 may bear
no relation to p. However, it is most desirable that the cost of comparing the

di erences between the two plang with respect to execution in the world be

2The notion of “di erence' between plans is elaborated on in the next setion.
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reduced as far as possible. The problem of minimizing thisstacan be re-cast
as one of minimizing the di erences between the two plans® and p using
syntactic constraints on the form of the new plan. These syntactic constraints

are added to the set *.

3. M3 j Replanning for Multi-agent Scenarios: In many real world narios, there
are multiple agentsA;::: A, that share an environment and hence a world
state. 3 The individual plans of these agents, ;::: | respectively, a ect
the common world state that the agents share and must plan inChis leads to

the formation of dependencies, ocommitments by other agents on an agent'

(7]

plan. These commitments can be seen as special types of caists that are
induced by an executing plan, and that must be obeyed when eteng a new
plan as a result of replanning. The aggregation of these contments forms the
set * for this model. The formal structure of these constraints ishat each
one of them is asoft goal { this work uses the notion of soft goal as de ned
by van den Briel et al. (2004) { which in itself consists of a boolean predicate,
an achievement requirement (soft/hard), and a reward and/openalty value. A
given (re)plan is said to satisfy one such constraint if therpdicate part of the
goal holds (is true) in the state that is produced by the exec¢ion of that plan.
This de nition of satisfaction is extended for a set of prediates; if the state
produced by the execution of the (re)plan has all of the consiint-predicates

true in it, that plan is said to satisfy the constraint set.

In the following section, the composition of the constrainset (for any given

plan ) is explored in more detail. First, however, a real worldapplication scenario

3Note that this is the case regardless of whether the planner models tlse agents explicitly or
chooses to implicitly model them in the form of a dynamic world.

“Notice that predicates that are part of soft goals are waived from this holding equirement.
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and the application of the three replanning models descrideabove to it are consid-
ered, in order to illustrate that these models are broad engh to capture the various

kinds of replanning techniques.

Example: Planetary Rovers

Planning for planetary rovers is a scenario that serves as eegt overarching applica-
tion domain for describing the motivations behind the varias models of replanning
that are proposed in this chapter. Automating the planning pocess is central to this
application for three reasons: (1) the complex checks andgmedures that are part
of large-scale or critical applications can often only be ity and correctly satis ed

by automation; (2) there are limited communication opportuities between the rover
and and the control station; and (3) the distances involvedule out immediate tele-
operation, since there is a considerable communication lagtween a rover operating

on the surface of a distant planet and the control center.

1. M;: This model is frequently used by planning algorithms thatreate path and
motion plans for the rover's operation. Often, changes to thenvironment (e.g.
the detection of an obstacle such as a rock ahead) will rendite currently
executing plan useless; in cases where the system needs &xtranmediately
and produce a new plan, creating a completely new plan workstbter than

trying to salvage some version of an existing plan.

2. M5: In the case of planetary rovers, both computational and cogive costs are
present when it comes to comparing and ° Changes to an executing plan
must pass muster with human mission controllers on Earth as Was mechanical
and electrical checks on-board the rover itself. It is thusmperative that the

replanning model is aware of the twin objectives of minimiag cognitive load
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on the mission controllers as well as minimizing the computan required on
board the rover when vetting a new plan °that replaces . In this case, the set
P will contain constraints that try to minimize the e ort needed to reconcile
Owith , and the metric used in the reconciliation determines the contents
of ®. These can be seen assyntactic version of plan stability constraints,
as against thesemantic stability constraints (based on commitments) that will

further be proposed.

. M3: In a typical scenario, it is also possible that there may be ultiple rovers
working in the same environment, with knowledge (completer gartial) of the

other rovers' plans. This knowledge in turn leads to dependeies which must
be preserved when the plans of one (or more) of the rovers cgar{ for example,
rover Spirit might depend on roverOpportunity to transmit (back to base) the
results of a scienti c experiment that it plans to complete.If Opportunity now
wishes to modify its current plan o, it must pay heed to the commitment
to communicate with Spirit { and pass on the data that results from that

communication { when devising its new plan 3.
4.2 Replanning Constraints

As outlined in the previous section, the replanning probleman be decomposed

into various modelsthat are de ned by the constraints that must be respected wie

transitioning from the old plan to the new plan 2 In this section, those constraints

are de ned, and the composition of the set for each of the models de ned previously

is discussed. Prior to this, the notion of glan is de ned; a plan is an action

sequence such that the rst action is applicable (executad) in the initial state I,

and the execution of the entire sequence results in a statewhich the goalG holds.
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4.2.1 Replanning as Restart

By the de nition of this model, the old plan p is completely abandoned in favor
of a new one. There are no constraints induced by the previoptan that must be
respected, and thus the set * is empty. Instead, what results is a new problem

instance P° whose composition is completely independent of the set®.
4.2.2 Replanning to Reduce Computation

It is often desirable that the replan for the new problem instnceP° resemble the
previous plan p in order to reduce the computational e ort associated with erifying
that it still meets the objectives, and to ensure that it can le carried out in the world.
The e ort expended in this endeavor is named theeveri cation complexity associated
with a pair of plans » and §, and informally de ne it as the amount of e ort that
an agent has to expend on comparing the di erences between ald plan  and a
new candidate plan ¢ with respect to execution in the world.

This e ort can either be computational, as is the case with aomated agents like
rovers and robots; or cognitive, when the executor of the pla is a human. Real world
examples where reveri cation complexity is of utmost impdance abound, including
machine-shop or factory- oor planning; planning for assise robots and human-
robot teaming; and planetary rovers (see Section 4.1). Paabrk on replanning has
addressed this problem via the idea gflan stability (Fox et al., 2006). The general
idea behind this approach is to preserve the stability of theeplan 8 by minimizing
some notion of di erence with the original plan p. In the following, two such ways of
measuring the di erence between pairs of plans are examineuhd it is seen how these

can contribute constraints to the set * that will minimize reveri cation complexity.
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Action Similarity Causal Similarity

Figure 4.2: Example illustrating action and causal similarity.
Action Similarity

Plans are de ned, rst and foremost, as sequences of actiottsat achieve speci ed
objectives. The most obvious way to compute the di erence lbgeen a given pair of
plans then is to compare the actions that make up those plangFox et al., 2006)
de nes a way of doing this - given an original plan and a new pan © they de ne
the di erence between those plans as the number of actionsahappear in and
not in  °plus the number of actions that appear in ®and not in . If the plans
and Care seen as sets comprised of actions, then this is esselgtiile symmetric
di erence of those sets, and we have the following constr&ir® min j 4 9.

This method of gauging the similarity between a pair of plansu ers from some
obvious pitfalls; a very simple one is that it does not take # ordering of actions in
the plans into account at all. Consider the simple plans a;;a, and ©: hay; ai;

the di erence between these two plansis 4 %= ;. However, from a replanning

SGiven this constraint, the similarity and di erence of a pair of plans are inverses, and hence the
name "Action Similarity'.
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perspective, it seems obvious that these two plans are realjuite dierent, and

may lead to di erent results if the actions are not commutatve. This di erence is
illustrated in Figure 4.2 with the use of a simple 4-action pla In order to account
for such cases, the ordering of actions within a plan, and negenerally, the causal

structure of a plan need to be considered.

Causal Link Similarity

The next step in computing plan similarity is to look not just at the actions that
constitute the plans under comparison, but to take the cauéastructure of those
plans into account as well. Work on partial order planning (®P) has embedded
a formal notion of causal links quite strongly within the planing literature. The
notion of a causal linkis de ned from (McAllester and Rosenblatt, 1991) as \a triple
hs; P;wi whereP is a proposition symbol,w is a step (action) name that has® as a
prerequisite (precondition), ands is a step (action) name that had? in its add (e ect)
list". Past partial order planning systems (Penberthy and Veld, 1992; Joslin and
Pollack, 1995) have looked at the idea of di erent serializens of the same partial
order plan. Given plans and ¢ and CL() and CL( 9 the sets of causal links
on those plans respectively, a simple constraint to enforcausal similarity would be:
minjCL() 4 CL( 9j. Note that this number may be non-zero even though the two
plans are completely similar in terms of action similarityj.e. ( 4 9 = ;. This
analysis need not be restricted to causal links alone, andrnche extended to arbitrary
ordering constraints of a non-causal nature too, as long dsety can be extracted from

the plans under consideration.
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4.2.3 Replanning for Multi-Agent Scenarios

\ In a multiperson situation, one man's goals may be another man's
constraints."

{ Herb Simon (Simon, 1964)

In an ideal world, a given planning agent would be the sole den of plan synthesis
as well as execution, and replanning would be necessitatedyoby those changes to
the world state that the agent cannot foresee. However, in threal world, there exist
multiple such agents, each with their own disparate objeatés but all bound together
by the world that they share. A plan » that is made by a particular agent a ects
the state of the world and hence the conditions under which &éother agents must
plan { this is true for every agent. In addition, the publicaion of a plan 4 by an
agent A leads to other agents predicating the success of their owraps on parts of
A, and complex dependencies are developed as a result. Fullltiragent planning
can resolve the issues that arise out of changing plans in Bucases, but it is far
from a scalable solution for real world domains currently. nistead, this multi-agent
space lled with dependencies can be projected down into angle-agent space with
the help of commitments as de ned by (Cushing and Kambhampati, 2005). These
commitments are related to an agent's current plan , and can dscribe di erent

requirements that come about:
1. when changes the world state that other agents have to plawith

2. when the agent decides to execute , and other agents predite their own plans

on certain aspects of it
3. due to cost or time based restrictions imposed on the agent

4. due to the agent having paid an up-front setup cost to enablthe plan
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A simple travel example serves to demonstrate these di eretypes of commit-
ments (Do and Kambhampati, 2002). Consider an agem; who must travel from
Phoenix (PHX) to Los Angeles (LAX). A travel plan that is made for agent A;
contains actions that take it from PHX to LAX with a long stopove at Las Vegas
(LAS). A, is friends with agentA,, who lives in LAS, and thus publicizes the plan of
passing through LAS.A, then makes its own plan to mee#; { this depends onA;'s
presence at the airport in LAS. If there are changes to the wakl(for e.g., a lower
airfare becomes available), there are several commitmettsit a planner must respect
while creating a new plan °for A;. First, there are commitments to other agents {
in this case, the meeting withA, in LAS. There are also setup and reservation costs
associated with the previous plan; for exampléd; may have paid a non-refundable
airfare as part of . Finally, there may be a deadline on gettingto LAX, and any
new plan has to respect that commitment as well.

At rst blush, it seems that the same kinds of constraints th& seek to minimize
reveri cation complexity between plans and °(minimizing action and causal link
di erence between plans) will also serve to preserve and kethe most commitments
in the world. Indeed, in extreme cases, it might even be the @& that keeping the
structures of and ©as similar as possible helps keep the maximum number of
commitments made due to . However, this is certainly not the mat natural way of
keeping commitments. In particular, this method fails wherhere is any signi cant
deviation in structure from to ¢ unfortunately, most unexpected changes in real
world scenarios are of a nature that precludes retaining sigcant portions of the
previous plan. For example, in the (continuing) air travel gample from above, agent
A: has a commitment not to the plan itself, but rather to the event of meeting
A,. This suggests modeling commitments natively as state catidns (as opposed

to casting them as extraneous constraints on plan structuyexs goals that must be
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either achieved or preserved by a plan as a possible replampiconstraint. This is

elaborated on in Section 4.3.3.
4.3 Solution Techniques

So far, three di erent ways in which the replanning problem @an be represented
have been looked at, and the di erences between these modeia the constraints
that need to be considered when making new plans in a changedrld have been
delineated. The planningtechniquesthat are (or can be) used to solve these variants

are now examined.
4.3.1 T1: Classical Planning

For the replanning as restartmodel, the problem is de ned as one of going from
a plan p that solves the problem instancé® = H;Gi to the best new plan ¢ that
is valid for the new problem instanceP®= H%GY. 1°%is the state of the world at
which p stops executing to account for the change that triggered regmning; that is,
replanning commences from the current state of the worldz°is the same ass unless
new goals are explicitly added as part of the changes to the iieb The replanning
constraint set * is empty, since replanning is being performed from scratcfhis
new instance is then given to a standard classical planner solve, and the resulting

plan is designated 9.
4.3.2 T2: Specialized Replanning Techniques

When it comes toreplanning to reduce computationand associated constraints,
techniques that implement solutions that conform to theseamnstraints must neces-
sarily be able to compile them into the planning process in s® way. This can be

achieved by implementing plan stability metrics { either eplicitly by comparing each
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synthesized plan candidate with the existing plan p, or implicitly by embedding
these metrics within the search process. One way of doing thedter is to use a
planner such as LPG (Gereviniet al., 2003), which uses local search methods, and
to structure the evaluation function such that more syntadt similarity between two
plans { similar actions, for example { is preferred. Such anpgproach is used by (Sri-
vastavaet al., 2007) in the generation of a set of diverse plans where thenstituent
plans di er from each other by a de ned metric; for replanniry where search re-use
is of importance, the objective can instead be to produagminimally di erent plans
within that set. An earlier version of this approach can be sedan the Casper system's

iterative repair approach (Knight et al., 2001).
4.3.3 T3: Partial Satisfaction Planning

This section examines replanning techniques that can be dsehen the depen-
dencies or commitments towards other agents due to an agehts original plan
(solving the problem instanceP) must be maintained. The planning algorithm used
here is the same one introduced in Section 3.3, and it nds artect plan if such a
plan exists. That is to say, the planning algorithm in use is ot modi ed, and it is
merely the problem that is given to that algorithm that is mod ed { this section
details that modi cation.

The constraint set ¢ now contains all those commitments to other agents that
were made by the plan . This work follows Cushing et al. (Cushmg and Kamb-
hampati, 2005) in modeling commitments asoft constraints that an agent is not
mandated to necessarily achieve for plan success. More galig commitments {
as reservations, prior dependencies or deadlines { can beduled as soft trajectory
constraints on any new plan °that is synthesized. Modeling commitments as soft

constraints (instead of hard) is essential because not abbrmmitments are equal. A
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replan °may be valid even if it outs a given commitment; indeed, it mg be theonly
possible replan given the changed state of the world. Softae allow for the speci -
cation of di erent priorities for di erent commitments by a llowing for the association
of a reward for achieving a given goal, and genalty for non- achievement. Both of
these values are optional, and a commitment may either be seas an opportunity
(accompanied by a reward) or as a liabiity (when assigned amty). The quality
of areplan °{in terms of the number of commitment constraints that it sais es {
can then be discussed in terms of theet-bene t, which is a purely arithmetic value.

An added advantage of modeling commitments as soft goals istlthe constraints
on plan structure discussed previously in Section 4.2.2 che cast as commitments
too. These constraints are commitments to thetructure of the original plan , as
against commitments to other agents or to other extraneouhpnomena like deadlines
etc. The advantage in doing this is that new plans and their dgerence to commit-
ments can be evaluated solely and completely in terms of theetidbene t of those
plans; this makes the enforcement of the replanning consiings during the planning
process more amenable to existing planning methods. Thus atuwral way of com-
bining two distinct quality issues in replanning is devised(1) how good a replan °
is for solving the changed problem instancH ¢ G4; and (2) how much °respects
and balances the given replanning constraints, which may lire service of completely
di erent objectives like reducing the computation involvel in verifying a new plan,
or commitments to other agents in the world.

To obtain the new problem instanceP ° from the original problemP, the following
transformations are performed: °is, as before, the state of the world at which exe-
cution is stopped because of the changes that triggered raphing. G° consists of all
outstanding goals in the setG as well as any other explicit changes to the goal-set;

in addition, the constraints from the set ¢ are added toG° as soft goals, using
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the compilations described below. The new problem instaneethen given to a PSP
planner to solve for the plan with the best net-bene t, whichis then designated 2.

The syntactic plan similarity constraints discussed at legth in Section 4.2.2 can
be cast as PSP constraints, in the form of soft goals. In thelli@ving, a general com-
pilation of the constraints in ¢ to a partial satisfaction planning problem instance
is described. This follows (van den Briegt al., 2004) in de ning a PSP Net Benet
problem as a planning problenP = (F; O;1;Gs) (whereF is a nite set of uents, O
is a nite set of operators andl  F is the initial state as de ned earlier) such that
each actiona 2 O has a \cost" valueC, 0 and, for each goal speci catiorg 2 G
there exists a \utility" value Uy, 0. Additionally, for every goalg 2 G, a "soft' goal
gs with reward rq and penalty py is created; the set of all soft goals thus created is
added to a new se(:.

The intuition behind casting these constraints as goals isat a new plan (replan)
must be constrained in some way towards being similar to thedier plan. However,
making these goalhard would over-constrain the problem { the change in the world
from | to | °may have rendered some of the earlier actions (or causal k)kmpossible
to preserve. Therefore the similarity constraints are instad cast assoft goals, with
rewards or penalties for preserving or breaking (respeatiy) the commitment to
similarity with the earlier plan. In order to support these gals, new uents need
to be added to the domain description that indicate the exed¢ion of an action, or
achievement of a uent respectively. Further, new copies dhe existing actions in
the domain must be added to house these e ects. Making copiekthe actions from
the previous plan is necessary in order to allow these act®io have di erent costs

from any new actions added to the plan.
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Compiling Action Similarity to PSP

The rst step in the compilation is converting the action sinilarity constraints in ~ ?
to soft goals to be added td3,. Before this, the structure of the constraint set * is
examined; for every ground actioma (with the names of the objects that parameterize
it) in the old plan , the corresponding action similarity constraintis ,2 7, and
that constraint stores the name of the action as well as the @@xts that parameterize
it.

Next, a copy of the set of operator is created and namedO,s; similarly, a
copy of F is created and named~,s. For each (lifted) actiona 2 O, that has an
instance in the original plan , a new uent named \ a-executed" (along with all the
parameters ofa) is added to the uent setF,s. Then, for each actiona 2 O, a new
action a,s which is a copy of the actiona that additionally also gives the predicate
a-executed as an e ect, is created. The process of going frofmetoriginal actiona
to the new onea,s is depicted graphically in Figure 4.3(i). In the worst case,he
number of actions in eachD,¢ could be twice the number inO. Figure 4.3 provides
an illustration of one such action, on the left in orange.

Finally, for each constraint . 2 ¢, a new soft goalg, is created with corre-
sponding reward and penalty valuesy, and py, respectively, and the predicate used
in g, is a-executed (parameterized with the same objects that contains) from Ogs.
All the g, goals thus created are added t&s. In order to obtain the new compiled
replanning instanceP?from P, the initial state | is replaced with the state at which
execution was terminated) % the set of operator0 is replaced withO,s; and the set
of uents F is replaced withF,s. The new instanceP®= (Fas; Ogs; 1 % Gy) is given to

a PSP planner to solve.
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ACTION SIMILARITY CAUSAL SIMILARIN
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Figure 4.3: Compiling action and causal similarity to PSP by creating ne e ects,
actions that house those e ects, and soft goals on those etsc

Compiling Causal Similarity to PSP

Causal similarity constraints can be compiled to PSP in a maner that is very similar
to the above compilation. The di erence that now needs to beonsidered is that the
constraints are no longer on actions, but on the grounded ungs that comprise the
causal links between the actions in a plan instead.

The rst step is to augment the set of uents; a copy ofF is created and named
Fes. Forevery uent f 2 F, a new uent named \f -produced" is added toF., along
with all the original parameters off . A copy of the set of operatorsO is created
and namedO.. Then, for each action ina 2 O., a new actionags is added;as Is a
copy of actiona, with the additional e ects that for every uent f, that is in the add
e ects of the original a, a.s contains the e ect f ,-produced { this process is shown
in Figure 4.3, on the right in green. Thus in the worst case, theumber of e ects of
every actionags is twice the number of e ects of the original actiora, and the size of
O Is twice that of O.

Finally, the causal constraints in # must be converted to soft goals that can

63



be added toGs. The constraints 2 ¢ are obtained by simulating the execution
of from | using the operators inO. Each ground add-e ectf, of each ground
actiona in is added as a new constraint . Correspondingly, for each such new
constraint added, a new soft goady_ is created whose uent corresponds tb., with
reward and penalty values'q andpg_ respectively. 6 All the goals thus created are
added to Gs. The new planning instance to be provided to the PSP plannes ithus
given asP %= ( F¢s; Ocs; | % Gs), wherel Cis the state of the uents when execution was
previously suspended.

It should be noted here that past results have already estashed a straightforward
compilation from soft goals and PSP to the classical planrgnproblem (Keyder and

Ge ner, 2009); this can be exploited to make replan generath more e cient.

Compiling PSP to Preferences

The constraints in the set ¢ can also be cast apreferences(Baier and Mcllraith,
2009) on the new plan that needs to be generated by the replang process. Prefer-
ences are indicators of theuality of plans, and can be used to distinguish between
plans that all achieve the same goals. The automated plangrcommunity has seen
a lot of work in recent years on fast planners that solve prefnce-based planning
problems speci ed using the PDDL3 (Gerevini and Long, 200@nguage; casting the
constraints in ¢ into preferences can thus open up the use of these stateloét
art planners in solving the replanning problem. Benton et al(2009) have already
detailed a compilation that translates simple preferencespeci ed in PDDL3 to soft

goals. This work can be used in order to translate the replamyg constraints into

SNote that in the general case, theconsumers{ i.e., actions that consume the causal link { would
need to be considered apart from the producers of those links, in orddo avoid over-constraining
the new problem. However, the assumption here is that the original plandoes not contain any
super uous actions.
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simple preferences, thus enabling the use of planners likean5 (Hsuet al., 2007)
and OPTIC (Benton et al.,, 2012). In the evaluation presented in Section 4.4, this
preference-based approach is used to improve the scalapitif replan generation.
The compilation itself is straightforward. For every soft gal gs that models ei-
ther an action similarity or inter-agent commitment constaint respectively (from Sec-
tion 4.3.3), a new preferences is created, where the condition that is evaluated by
the preference is the predicata-executed orf -achieved respectively, and the penalty
for violating that commitment is the penalty value associatd with the soft goal,pg, .
The set of preferences thus created is added to the problenstance, and the metric

is set to minimize the (unweighted) sum of the preference Vation values.
4.4 Empirical Evaluation

To evaluate the contributions to the theory of replanning, wo claims are made
and checked. The rst is that it is possible to support all theexisting replanning
metrics (and associated techniques) using a single planneia compilation to a sin-
gle substrate. That substrate can be either soft goals (andhé technique to solve
them partial satisfaction planning), or preferences (prefence-based planning). The
compilation outlined in Chapter 4 serves as support for thigst claim. Empirical
evidence is also provided for the second claim { namely thatése di erent replanning
metrics are not good surrogates for each other { and that swamg them results in a

deterioration of the metric being optimized.

The Warehouses Domain

Planning for the operations and agents contained in automed warehouses has emerged
as an important application (Barbehennet al., 2011), particularly with the success

of large-scale retailers like Amazon. Given the size, comylg, as well as real-time
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nature of the logistical operations involved in administeng and maintaining these
warehouses, automation is inevitable. One motivation befil designing an entirely
new domain for the evaluation was so that the various actionagents, and problem
instances that were generated could be controlled. Brie ythe domain consists of
packageghat are originally stocked onshelves these shelves are accessible only from
certain special locations omgridsquares The gridsquares are themselves connected
in random patterns to each other (while ensuring that there r@ no isolated grid-
squares). Carriers { in the form of forklifts that can stock and unstock packages
from shelves, andtransports that can transport packages placed on them between
various gridsquares { are used to shift the packages from thenitial locations on
shelves topackagers where they are packaged. The instance goals are all spedi e
in terms of packages that need to be packaged. The domain thpsovides coverage
for important characteristics from existing planning benemarks such as Blocksworld,

Depots, Driverlog, and Logistics.

Perturbations

There are two main kinds of perturbations that are modeled and generated(i)
packages carfall o their carriers at random gridsquares; and (ii) carriers (fdlifts
or transports) can themselvesdreak downat random. For packages that fall o at
a gridsquare, a forklift is required at that gridsquare in ater to lift that package
and transport it to some other desired location (using eitlrethat same forklift, or
by handing o to some other carrier). For carriers that breakdown, the domain
contains speciatow-trucks that can attach themselves to the carrier and tow it along
to a garagefor a repair action to be performed. Garages are only located speci c

gridsquares.
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Agent Commitments

There are three kinds of agents in the domain { packagers, tetnucks, and carriers.
Agent commitments are thus any predicates that these agentagicipate in (as part
of the state trace of a given plan ). In our domain, there are far such predicates:
forklifts holding packages, packagesn transports, tow-trucks towing carriers, and

packagesdeliveredto a packager.

4.4.1 Results

Experimental Setup

Using the domain described in Section 4.4, an automated prebh generator that can
generate problem instances of increasing complexity wagated. Instance complex-
ity was determined by the number of packages that had to be peaged, and ranged
from 1 to 12. Four randomly generated instances were assaedwith each step up in
complexity, for a total of 48 problem instances. As the numbef packages increased,
so did the number of other objects in the instance { forklifts transports, shelves,
and gridsquares. The number of tow-trucks and garages waslcheonstant at one
each per instance. The initial con guration of all the objets (through the associ-
ated predicates) was generated at random, while the top-kelvgoal always remained
the same { package all packages in the initial con guration Yo delivering them to a
packager. Perturbations (as outlined in Section 4.4) wereegerated at random and
incorporated via addition to the problem instance le.
For each of the replanning metrics that are evaluated { speedimilarity, and

commitment satisfaction { the constraints outlined in Sedbn 4.2 are set up as part
of the replanning metric. When optimizing the time taken to geerate a new plan,

the planner does not need to model any new constraints, andncahoose any plan
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that is executable in the changed state of the world. Likewes when the planner is
optimizing the similarity between the new plan and the prewus plan (as outlined
in Section 4.2.2), it only evaluates the number of dierence (in terms of action
labels) between the two plans, and chooses the one that minbes that value. The
planner's search is directed towards plans that ful Il thisrequirement via the addition
of similarity goals to the existing goal set, via the compilation procedure desbed
in Section 4.3.3. Finally, when the metric is the satisfactioof commitments created
by the old plan, the planner merely keeps track of how many ohése are ful lled,
and ranks potential replans according to that. These commmtents are added as
additional (simple) preferences to the planner's goal seind in the current evaluation
each preference has the same violation cost (1 unit) assaedwith it.

All the problem instances thus generated were solved with th8GPlan5 plan-
ner (Hsuet al., 2007), which handles preference-based planning problevies partition
techniques by using the costs associated with violating gegences to evaluate partial
plans. The planner was run on a virtual machine on the Windows Aze A7 cluster
featuring eight 2.1 GHz AMD Opteron 4171 HE processors and 56GB RAM, run-
ning Ubuntu 12.04.3 LTS. All the instances were given a 90 mineitimeout; instances

that timed out do not have data points associated with them.

Metric: Speed

In Figure 4.4, the time taken for the planner to generate a plafon a logarithmic
scale) for the respective instances is presented, using theee replanning constraint
sets. Replanning as restart is a clear winner, since it takesders of magnitude less
time than the other two methods to come up with a plan. In parttular, replanning
that takes plan similarity into account takes an inordinateamount of time in coming

up with new plans, even for the smaller problem instances. Thshows that when
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Figure 4.4: Time taken to replan, in milliseconds (ms.)
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Actions: Set Difference
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Figure 4.6: Set di erence (action) vs. original plan

speed is the metric under consideration, neither similayitwith the original plan
nor respecting the inter-agent commitments are good surratgs for optimizing that
metric.

Additionally, the evaluation also measured the length of th@lans that were gen-
erated, in order to compare against the original plan lengthFigure 4.5 shows that
the planner doesn't necessarily come up with signi cantlyonger plans when it has
to replan; instead, most of the computation time seems to b@ent on optimizing the
metric in question. However, these results seem to indicathat if plan length is the
metric that is sought to be optimized, replanning without adlitional constraints (as

restart) is the way to go.

Metric: Similarity

For this evaluation, the di erence between the old plan andthe new replan °

was modeled as the set dierence n § between the respective action sets. This
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Figure 4.7: Symmetric di erence (action) vs. original plan

number was then plotted for the di erent problem instances & a measure of the
di erences between the two plans. As shown in Figure 4.6, the thed that takes
plan similarity constraints into consideration does much étter than the other two
for this case. Additionally, the evaluation also calculatedhe symmetric di erence
i 4 Y (the metric used by Fox et al. (Foxet al., 2006)); these results are presented
in Figure 4.7. Even here, the approach that respects the similty constraints does
consistently better than the other two approaches. Thus thee two results show that
when similarity with the original plan is the metric to be maxmized, neither of the

other two methods can be used for quality optimization.

Metric: Commitment Satisfaction

Finally, the number of inter-agent commitment violations inthe new plan were mea-
sured, where the commitments come from the agent interactis in the original plan.

Figure 4.8 shows that the similarity preserving method violes the most number of
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Figure 4.8: Number of agent commitments violated

commitments in general. This may appear surprising initi&, since preserving the
actions of the old plan is at least tangentially related to peserving commitments
between agents. However, note that even the similarity maxizing method cannot
return the exact sameplan as the original one; some of the actions where it di ers
from the old plan may indeed be the actions that created the fer-agent commit-
ments in the rst place, while other preserved actions may wo no longer ful Il the
commitments because the state of the world has changed. Thagsults con rm that
both maximizing similarity as well as replanning from scrath are bad surrogates for

the metric of minimizing inter-agent commitment violatiors.
4.5 Limitations

There are several extensions that can be proposed to the @mt work on replan-
ning and handling changes to the world state. Some of thesenie limitations that

are speci c to the current approach, while others extend thetate-of-the-art as far as
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the understanding of replanning goes.

First, the limitations. One big limitation of this work currently has to do with
the evaluation. As can be seen from Section 5.3.1, the currealuation is restricted
to a single warehouse style domain. A justied criticism of his evaluation may
thus be that it fails to report coverage on a variety of existig benchmarks from
the International Planning Competitions (IPCs). However, he main purpose of this
work was to bring the di erent kinds of replanning technique together; besides, this
limitation can be overcome by running additional experimes.

Another limitation concerns the representation of commitmes (c.f. Section 4.3.3).
Currently, commitments are restricted to just uents, wheter those uents be pred-
icates that represent interactions between multiple agest or \meta"-predicates that
represent the achievement of certain states. However, it isrceivable that the de -
nition of commitment be expanded to take into account de niions o ered in related
work (Levesqueet al., 1990; Hunsberger and Ortiz Jr, 2008; Meneguzzi al., 2013).

Yet another limitation of the current work pertains to how eecution failures
are modeled and handled in the evaluation scheme. Currentlghe initial state of
the original problem isperturbed { that is, modi cations are added to it { and the
planner is given this modi ed problem instance to plan over.However, this is an
approximation of execution failure as it would manifest itslf in the real world, due to
the reason that not only would facts relevant to the perturb&on change, but other
facts would have changed from the initial state as well. In &, the right state of the
world would depend on precisely where the execution of thedghlan was interrupted.
One way to partially address this is to create a simulator foplans that simulates the
execution of a given plan up until a speci ed point, and retuns the state that results
from the partial execution of that plan. Then, instead of modying the initial state

with the perturbations (as is currently the case), the algothm would instead modify
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that state that results from the partial execution with the perturbations.

As far as extending the state-of-the-art regarding replanng is concerned, the
rst idea that demands exploration is one that is brie y introduced towards the
end of Section 4.3.3. In order to support better scalabilitpnd to use the compilation
outlined in this work to generate a quanti able empirical sged-up for replanning, the
soft goals generated as replanning constraints can be cohagito classical planning
using the process outlined by Keyder and Ge ner (Keyder and &ner, 2009). Doing
so will open up an entire batallion of fast classical planngi(a list that is constantly
updated every couple of years thanks to the IPC) in service dést solutions to
replanning problems.

Finally, an issue where much progress still remains to be madencerns the re-
planning metrics themselves, and the related issue of whehe numbers that are used
to rank various replans are obtained from. For the former, # outstanding question is
this { when there are multiple competing metrics (for e.g., the taken to replan, com-
mitment satisfaction, and similarity to some previous plapfor replanning, is there
any feasible way of combining these disparate metrics? Fdret latter, the question
is one of justifying costs and rewards related to a speci ¢ gpcation { for example,
when planning for earth orbiting satellites, can simulatios and an analysis of histori-
cal usecases produce realistic estimates for the costs asged with violating various
commitments and for actions that might preserve such comnmtents, but increase
the overall cost of a plan? These are all questions that can baudied to much depth

as an extension of the work that has been presented in this skstation.
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Chapter 5

EVOLVING MODELS

As automated planning systems move into the realm of real wdrlproblem do-
mains like human-robot teaming, a recurring issue is that ohodel uncertainty and
incompletely speci ed domain theories. These shortcomiagnanifest themselves as
reduced robustness in plans that are synthesized (Nguyenal., 2013), and subsequent
failures during execution in the world. One way of dealing Wi such contingencies is
to employ a reactive approach that replans for every failurthat is detected during
execution. However, such an approach is doomed if parts of theodel are never re-
vealed to the planner; for example, consider trying to opendaoor that is locked, yet
the planner's model does not support the notion of doors hang locks. A reactionary
module would keep trying an "open' action with no successnse the door has to be
unlocked rst (Gil, 1993).

More generally, it may be the case in many HRT scenarios that dlugh plan
synthesis is performed using a nominal domain model, thereeadomain experts who
specify changes to the speci c problem instance and some@émthe domain model
itself during the planning process. Quite often it is usefulattake this new information
into account, since it may help prevent grievous executioraifures when the plan is
put into action. Additionally, new information about the domain or the problem
may open up new ways of achieving the goals speci ed, thus uésg in better plan
guality as well as more robust plans.

In smaller domains and problems, it may be possible to handigdates to the
domain model and the speci ¢ problem under consideration byngaging in reactive

replanning. However, things look di erent when consideringpuman-robot teaming
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domains that use automated planning. Consider a robotic ageacting in an Urban
Search and Rescue (USAR) scenario as part of a human-robot tearfihe human
commander is removed from the scene due to the inherent dargyef the situation,
and hence the agent needs to act in an autonomous manner to igsle the goals
prescribed to it. To achieve these goals, the agent followsd@amain theory that is
provided by a domain expert; howevenipdatesto this domain may be speci ed while
the agent is executing a plan in the world. In such circumstaes, two things are of
essence: rst, we need a semantics fepecifyingsuch updates and integrating them
into the knowledge base of the planner that is guiding the age Subsequent to this,
the problem changes to one akasoningabout the changes and their e ect on the
current plan's validity and metrics. As noted previously in ction 4.3.1, replanning
from scratch is a trivial approach { however, this method igares the fact that many
changes may be localized to a certain portion of the domain émay not require the
expensive re-computation of a new plan. In this chapter, thproblem of updates to
a domain model while a plan is actively executing in the worlés presented. Based
on prior experience in providing planning support to a robat agent in a search and
rescue scenario (Cantrelet al., 2012), the nature of the updates that need to be
supported are described, and the components of such an upel@re demonstrated.

5.1 Updates to the Robot's Model

The standard for domain speci cation in the automated planmg community
has been a variant of the Planning Domain Description Langge, viz. PDDL
2.1 level 3 (Fox and Long, 2003), which extends the originalD®DL semantics by
allowing for durative actions. In the rest of this section, lie discussion is restricted to
the use of this particular variant language, since it is onef the most widely-used for

the speci cation of existing planning benchmark domains,ral also expressive enough
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to encode (to a reasonable level of detail) the robotic sehrand rescue domain of
interest. Thus the \robot's model" is a planning domain modeas de ned in the
PDDL 2.1 level 3 language.

At the outset, it should be pointed out that it is very unlikely that updates to the
robot's action model are \discovered" as changes in the wdrlit is more likely to be
the case that such updates are speci ed to the planner by a dam expert { perhaps
even the person who crafted the domain in the rst place. Donma design is not an
exact science, and creating even an approximation of a reabnd model is fraught
with errors of omission and commission. However, most domaiare designed such
that the rst few versions are never completely o -base. Verrarely is there a need to
change a signi cant percentage of a domain model, and moreeosf than not, changes
are updates to small portions of the description. This is espially true in human-
robot teaming scenarios like search and rescue { the commands more likely to
provide additional information that is relevant to the immeadiate tasks that are being
performed; in terms of symbolic planning, this translatesnio the operators? that
are currently being executed as part of the overall plan. Inugh scenarios, it makes
more sense to provide a way of updating the existing domainsteiption and the plan
that is currently executing than to throw out all the search eort and replan from
scratch, since the changes to the domain may not a ect a sigoant portion of the
plan. In addition, this kind of approach is preferable evemiscenarios where domain
descriptions are learned (and updated) automatically thnagh repeated planning and

execution episodes.

INote that in the rest of this chapter, “operator' is used interoperably with “action'.
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5.1.1 Describing Model Updates

In order that new information about the model may be capturednd used fruit-
fully, the rst need is to develop a syntax that can represensuch updates. In this
pursuit, it is useful to consider where such updates come fno{ as mentioned previ-
ously, in most real world domains, it seems reasonable to ass that human experts
will provide these. Depending on the scenario at hand, theegperts could range from
designers or engineers who have a great deal of experiendh tie existing planning
representation to commanders who are directing operatioms the eld (consider the
case of a search and rescue robot being given high-level clirees). Any language that
describes changes to a model should be fairly similar to thepresentation that is used
to describe the original model (hence, PDDL 2.1). In order tdevise a syntax that
updates operators, it is essential to rst consider their sticture. The constituents
of a PDDL 2.1 durative action are: (1) Name; (2) Parameters; §3Duration; (4)
Conditions; and (5) E ects. Furthermore, conditions may be at start', "over all’, or

“at end’, while e ects may be speci ed "at start' and "at end’

Update Syntax & Semantics

This work borrows from the update syntax described in (Cushg et al., 2008) in
order to provide a means of updating operator descriptionsTo de ne, an update
syntax for an operator description isJ = hUy; Uc;Up; Uy ; Up; Ugi where Uy is the
name of the operator (and is used as a primary key for lookingpuhe operator if
it currently exists); Uc is the new cost of the operatorl)p is the new duration; Uy,
are the new variables (parameters)}Jp is a set of the new preconditions, antlg is
a set of the new e ects. The setd)y, Up and Ug each consist of two subsets, one for

the respective additions and the other for the respective ions. The semantics of
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the updates works bymerging the changes with the existing operato©; the merge
semantics are as follows. First, the action to be updated isdked up usingUy. If
a match is found,Uc and Up replace the existing cost and duration of the action
respectively. Finally, the setsUy, Up and Uz are handled; the add subsets of these
sets are respectively added to the variable, preconditioand e ect list of operator O
respectively; then, the delete subsets of these sets arepesgively removed from the
variable, precondition, and e ect list of operatorO respectively. The de nition of a
plan with respect to this updated model of the robot remains the sae as previously,
and does not change.

An example from the USAR scenario is picked to demonstrate the age of this
syntax { the operator being updated is one that enables the bot to enter an area

of interest.

(:durative-action enter

‘parameters

(?h - hallway ?r - room)
:duration

(= ?duration (dur_enter))
:condition (and

(at start (at ?h))

(over all (connected ?h ?r)))
-effect (and

(at start (not (at ?h)))

(at end (at ?r)))

The above action is a simple symbolic encoding of an “entect@n in the search and
rescue scenario; it enables the agent to transit from a haby into a room. In the

following, an update to this action is illustrated based on ew information that the
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human commander wishes to provide. In this particular casthe commander adds an
object of type "door' as an additional parameter, and the adkibnal requirement that
this door needs to be “open' in order for the agent to enter theom. The commander

also re-sets the duration of the action to a static quantity.

(:actionupdate
:name enter
:addparameters
?d - door
:delparameters
'setduration 50
:addcondition
(at start (unlocked ?d - door))
:delcondition
:addeffect

:deleffect

Except the \:name" and \:duration" elds, which accept only one argument, all other
elds may have as many arguments as desired (or none). In pamtlar, the name eld

is of utmost importance, since it determines which action # update is applied to.
The onus on consistency is left with the domain expert; if the are inconsistencies,

that part of the update is simply ignored.

5.1.2 Approaches

Providing a syntax for enabling updates to the domain duringxecution is bereft
of value if one is unable to use that knowledge to analyze (amdodify if required)
the currently executing plan. A trivial approach isreplanning from scratchon any

and every update to the domain or problem description; in facsuch an approach
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would not even require a complex syntax that describes domachange, given that
it would su ce to simply swap the current domain le with an up dated one and re-
initialize the search. However, when one deals with real wdrdomains, this reactive
approach is unsatisfactory due to the fact that most changdbat are prescribed by
human experts ardocal to speci ¢ parts of the domain, as described earlier. Instda
a more preferred approach would be to analyze the current pland its validity and
associated metrics subsequent to the updates.

First, an overview of the various cases that arise when coneithg the problem
of plan validity pursuant to updates to the domain is providd, in order to ease the
comparison that will follow. The approaches to this problentan be classied as

follows:

1. Replan from Scratch : Given a new version of the domain (with updates),
the planner runs again in order to come up with a plan that conlptely replaces

the currently executing plan.

2. Plan Re-use : The planner analyzes the current plan with respect to the up

dates received and takes one of the following courses:

(a) Action Addition : The addition of an action to the domain does not
a ect the validity of the current plan. Other metrics assocated with the
problem may change, since a new plan may now be available, Imatchange

IS necessitated if a su cient plan is already executing.

(b) Action Removal : The removal of an action can be further classi ed into

two categories with respect to the validity of the current e&cuting plan:

i. Non-participating Action: If the action that is removed does not par-

ticipate in the currently executing plan, no change is necsary.
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ii. Participating Action: This is a more complex case, and needs analysis

of the nature that is proposed in the following.

(c) Action Update : When parts of an action are updated (addition or dele-

tion), one needs to perform a more complex analysis as deled next.
5.2 Implementation

In order to describe how model updates are facilitated in thplanner, one must
rst briey describe the representation of the domain model and its constituent
actions, within the planner. The domain model for a planningroblem is typically
represented in the PDDL language; most planners can parse dans that are speci ed
in PDDL 2.1 (Fox and Long, 2003). However, in real-world domas, it is unreasonable
to assume that the domain description is given to the plannexs a structured PDDL
le. Instead, it is much more likely that the domain will be speci ed via calls to the
planner from the architecture. As seen in Figure 5.1, the plaen server sits inside
the DIARC (Scheutz et al., 2007a) architecture { information regarding the domain
model is piped to the planner from various components in thigrchitecture.

To enable the transfer of this information, the planner promes an API called
PDDL Helper that contains various methods to create and set various donmacon-

stituents, as follows:

1. Name: Set the domain name.

2. Requirements: Keywords denoting the PDDL requirementsf @ planner that

runs on this domain.
3. Predicates: Logical predicates in the domain.
4. Functions: Mathematical functions (for e.g., non-stati durations of actions).
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5. Constants: Constants used in the domain (for e.g., coloo$ boxes to be iden-

ti ed).
6. Variables: Variables used in the domain.
7. Actions: Actions that are part of this domain.
8. Action Costs: The costs of the various actions.
9. Action Durations: The durations of the various actions.

The actions themselves are created by calling a specfadtion Maker (AM) API
that is provided as a planner service. The AM API contains mettas that can be
used to create, set, and query the values of the following &tituents of anindividual

action 2 :
1. Cost: The cost of performing that action.
2. Duration: The duration of the action.
3. Constants: The list of constants used in that action (if ay).
4. Functions: The list of functions used in that action (if ay).
5. Variables: The list of variables used in that action (if ay).
6. Predicates: The list of predicates used in that action (i&ny).
7. Conditions: Thestart, over all, and end conditions that are part of the action.
8. E ects: The start and end e ects that are part of the action.

These APIs (and the methods contained within them) can be usdd create or

modify actions in the planner's model of the actions availdé to the robot.

2Note that the name of the action cannot be set, since it acts as a unique idérer from the time
the action is created, through to when the action has to be modi ed.
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5.3 Empirical Evaluation

First, the use-case used throughout this evaluation is preged: the human spec-
i es (during execution) that the robotic agent must push thedoor to a room in order
to enter that room. The robot must be in a position to understad the implications
of that directive. If there are goals that can only be achieekby entering that room,
the robot must update its understanding of the world and infethat the new capa-
bility now allows it to achieve those goals. It is these taskbat are performed by the
planner: (1) the task of updating the robot's model of the wdd and understanding
the implications of those changes, and (2) processing chasgo the facts and goals

in the robot's knowledge that are brought on by the changes tihne model.
5.3.1 Application Task: Updates from Natural Language

The speci c application that is considered in this chapternvolves a robot ex-
ecuting in an Urban Search and Rescue (USAR) task. The robot is itonstant
communication with a commander, who directs the robot with rgard to its goals.
The robot starts on an unspecied oor, at the beginning of a dng hallway with
doors leading into rooms on either side. The robot's initiajoal is to get to the end of
that hallway within a stipulated time (ostensibly to deliver important supplies). To
this initial goal, the commander adds a new goal after the ra starts executing its
initial plan, using the mechanism speci ed in Chapter 3 { thathe robot must check
inside rooms and report on injured humans in those rooms (ifig).

The robot's model is equipped to deal with such an instructim but if the robot
comes to a closed door, it moves on without checking insideathroom. However,
in this particular scenario, the commander also speci es (ding execution) that if

the robot comes upon a closed door, it can try to push that doan order to open
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it. This is a new capability that is being speci ed to the robad (and hence to the
planner that plans for it) after execution has commenced; thplanner must parse this
information, update its internal representation of the woid model, and replan anew

if the new information has any bearing on the scenario goalan(d the plan currently

executing).
Microphone Camera Laser
l l Rangefinder
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Recognizer Processor Processor
A 4 \L
NLP/ > Goal »| SapaReplan
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Motion Text to
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Robot Speaker
Base

Figure 5.1: A schematic of the integrated system that facilitates modelpdates.

Results

The evaluation is conducted on the scenario outlined prewsly. In speci c, variants
of the sentence \if you are at a closed door and you push it oneeter, you will be
in the room" are used to inform the robot about the new capabty (action) at its

disposal. This input can be segmented as follows:

preconditions: you are at a closed door

action de nition: you push it one meter
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postconditions: you will be in the room

This sentence is run through reference resolution and pargi modules, in order
to come up with semantic entities that formalize the meanin@f the utterance to
the robot's (and planner's) model of the world. After this st@, the new capability
is submitted to the goal manager via a method call of the foldng form: associate-
Meaning(action de nition, preconditions, postconditions)lhe goal manager processes this
capability and passes it on to the planner, as shown in Figurels The APl methods
described in the previous section are invoked on the plannir order to update its
model. The planner process is then restarted and the seardr & new plan begins.
Note that this technique falls under the rst approach discused in Section 5.1.2, i.e.,
Replan from Scratch Such an approach was found to be su cient for this scenario;
future work includes considering the other approaches ointéd in that section and
testing their e ect on the planning process.

In this scenario, the addition of the \push" action manifess a di erence when the
planner encounters a closed door during the execution of tseenario. The presence
and detection of the door informs the planner of the existeraf a room to explore {
and consequently a possible injured human to look for { behdnthat door. However,
prior to the model update, the planner would simply have plamed to move on from
that location since it did not have the capability to go into the room. Given the
new action { which is speci ed once the robot has passed thest closed door { the
planner instead instructs the robot to push open the next cked door. When the
robot pushes through and succeeds in getting into the roonhe plan to look around
that room to verify whether there are any injured humans cormbues. A successful
run of this scenario is presented as the evaluation for thigenario, in the following

video: http://www.youtube.com/watch?v=NEhBZ205kzc 3 .

3In this video evaluation, \Red box" was used as a stand-in for an injuredhuman.
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5.4 Lower Level Action Sequencing

Although the robot can accept useful information from the huran that will make
the execution of its various tasks clearer or easier, it mube equipped with natural
interfaces for such interactions with humans. One of the pbtems with e cient
information exchange between robots and humans has been daiemains) the high
entry barrier relating to the question ofnatural human-robot interaction Robots {
and the integrated systems that control them { require inputin structured formats
(as evidenced by the recent discussion), while humans are sh@omfortable with
less structured mediums like speech. This impedance mismlabetween entities that
store knowledge on the one hand, and those that can make e e@ use of it on the
other, can often make it ine cient or even impossible to planand execute in the real
world.

One way to overcome this mismatch is to provide an interfacéndt maps natu-
ral language input to the various structured information rguirements on the robot's
end. Such approaches have been tried earlier, from work in ratkinitiative plan-
ning (Myers, 1998) to more recent work on using natural langge instructions to
update an executing planner's model (Cantrekt al., 2012). In this section, the focus
is shifted to enabling model updates via information spead by humans. As part
of an extended undergraduate research project (Sethed al., 2014), Cantrell et al.'s
work was extended by addressing two main concerns. First, ttomplex natural
language processing that is often needed to understand humspeech was sought to
be simplied. This is made possible by the emergence of rddla and cheap voice
recognition capabilities on various open-source mobilegblorms like Android, which
enabled the creation of a mobile application (app) that woudl handle the interface

with the human. Second, Cantrell et al.'s work su ered from he restriction of having
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to specify before the factthe lower level realization of any new high level action that
is speci ed, which defeats the purpose of enabling the humaa teach an old plan-
ner new tricks. Instead, in this extension, information wasought from the human
teammate on how to make this mapping possible. The functiolity described in
this section was implemented on a Google Nexus 7 tablet, andaated using an

Aldebaran Nao humanoid robot (Aldebaran Robotics, 2008).

Planner Integration

At the core of this extension is the algorithm that interface the Nao robot with
the Sapa Replan planner, an interface that was developed ovgummer and Fall of
2013. To do this, it was necessary to be able to access the planfreely using an
API; read the planner's output in order to get the instructionsto be executed; and
read and write to the world state and goals in the problem le @ that they could
be updated whenever necessary (Talamadupudd al., 2011). The Java programming
language provides tools that easily allows interfacing witthe command prompt, thus
allowing for the running of java jar archives such as Sapa Rlep through them, as
well as reading and writing output. Although the Sapa Replan lanner comes with
an API that allow for the direct modi cation of internal data structures, the aim was
to keep the integration as simple and straightforward as pewle. Thus this work
is restricted to processing only the output from the planneon the command line.
Once the planner's output is read, it is processed into its dividual components:
what action is being performed, the actor, and the object beg acted on or toward.
These are compiled together, along with the main goal of theqgblem, and processed,

meaning that the set of all actions is looped through and eadttion is executed.
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Model Updates: Creating a New Action

To create a new action, the user rst has to stop the robot, andhen say \New
Action". The robot then asks the user for the name of the new aicn. Once the
action name has been added, the robot prompts the user foranfmation to Il out the
PDDL action template. The user provides a word, corresporlj to a parameter name
or type, precondition parameter, e ect parameter, etc., ath based on the previous
word stated and the portion of the PDDL action being dictated the word given is
formatted appropriately. Once the human provides the entaty of the High Level
Action (HLA), she says \End of Action" in order to store the PDDL adion as a

string and terminate the PDDL action generation sequence.

Figure 5.2: An example of lower level action sequencing; the arrows indie the
information exchanged between the robot and the human, botmnembers of the same
team.

A PDDL action is useless, however, without some way to impleant that action in
the (lower level) real world. Once the PDDL action is generatl, a second sequence is
launched in order to determine the low level implementatioof the new action. The
low level implementation of an action is the step-by-step prcess that is necessary
to physically implement an HLA, described in PDDL, in the real wrld. The user

speci es each of the low level components needed to implernéie HLA. An example
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of this interaction is outlined in Figure 5.2.

When the user inputs a lower level component, the robot lookgpuhe name of
that component in a data structure. The name of each componeis mapped to a
list of its parameters. If the robot successfully looks up #hcomponent, it prompts
the user for the parameters for that component. A componentame speci c to the
HLA that it is being used for is generated. The parameters ardnén mapped to that
speci c component name and stored in another data structureThe entire low level
implementation, known as a lower level action (LLA) is then mpped to the name of
the HLA and stored in a third data structure.

Once the high level and low level implementations are comyde the replanning
process can begin. As Sapa Replan does not support update®laing direct changes
to the PDDL domain le, it is necessary to completely terminge the planner in order
to add the new action to the domain le. The program automatially terminates
the planner, opens the domain le, and adds the new action tche le. Once the
action is added, the le is closed and the planner is restarde The program then runs
as normal, generating a plan and executing it, only this timeising the new action
whenever necessary in order to complete the plan. If (and wiethe new HLA is
called, the system already knows the LLA corresponding to,iand thus knows how

to execute that HLA in the world.
5.5 Limitations

There exist a couple of limitations with the approaches taketo deal with domain
models (and modi cations to those models) in this chapter. [st, the approach
outlined in Section 5.2, though su cient for the purposes ofthe USAR scenario
discussed here, still leaves open the question of mappinghrevel action descriptions

to their lower-level counterparts on the robot, so that the ew action may be carried
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out successfully in the world. Staying with the example disissed in this chapter,
this means that although the planner has the capability of aepting a high-level
description of the \push" action, there is no way of mapping hiat description to a
lower-level specication on the robotic agent. Instead, irCantrell et al. (Cantrell
et al,, 2012), it is assumed that this mapping is already written ito the integrated
architecture. This is clearly a limitation on the kinds of uglates that can be speci ed,
since the mappings need to be speci ed beforehand. Fortuedy, this limitation is
handled by the work described in Section 5.4, where the desigf a new app allows
users to specifyboth high-level modi cations as well as their lower-level mappgs
using rudimentary natural language. The scope of the lowésvel mappings is limited
by the robotic agent in question; for example, if a Nao humansirobot (Aldebaran
Robotics, 2008) is being used, the list of all applicable (dnrelevant) lower-level

operators is readily available.
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Chapter 6

COORDINATION THROUGH PLAN & INTENT RECOGNITION

As robotic systems become more ubiquitous, the need for tectogies to facilitate
successful coordination of behavior in human-robot teamstomes more important.
Speci cally, robots that are designed to interact with humas in a manner that is
as natural and human-like as possible will require a variety of sophisticated cogni-
tive capabilities akin to those that human interaction parhers possess (Scheuét al.,
2007b). Performing mental modeling, or the ability to reasoabout the mental states
of another agent, is a key cognitive capability needed to ebi@ natural human-robot
interaction (Scheutz, 2013). Human teammates constantly asknowledge of their
interaction partners' belief states in order to achieve sgessful joint behavior (Klein
et al., 2005), and the process of ensuring that both interaction pmers have achieved
common groundwith regard to mutually held beliefs and intentions is one tat dom-
inates much of task-based dialogue (Clark and Brennan, 1991However, while es-
tablishing and maintaining common ground is essential foream coordination, the
process by which such information is utilized by each agent toordinate behavior is
also important. A robot must be able to predict human behaviobased on mutually
understood beliefs and intentions. In particular, this cagbility will often require
the ability to infer and predict plans of human interaction @rtners based on their
understood goals.

In this chapter, the focus of the discussion is shifted fronhé model of the robotic
agent to the model of the human agent who is part of the humarebot team (Tala-
madupula et al., 2014a). Automated planning is a natural way of generating ahs

for an agent given that agent's high-level model and goals. h& plans thus gener-
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ated can be thought of either as directives to be executed ime world, or as the
culmination of the agent's deliberative process. When an agate representation of
the agent's beliefs about the world (the model and the stategs well as the agent's
goals are available, an automated planner can be used poject that information
into a prediction of the agent's future plan. This prediction process can be dlught
of as a simple plan recognition process; further in this sémh, the expansion of this
process to include incomplete knowledge of the goals of thgeat being modeled will
be discussed.

In the rest of this chapter, the discussion concerns the mdae of the robotic
agent's human teammate's mental state, and the use of infoation from that to
enable coordination between the robot and the human agentavautomated planning.
First, a simple human-robot interaction (HRI) scenario that wil necessitate mental
modeling and planning-based behavior prediction for sugsful human- robot team
coordination will be presented. The formal representatioof beliefs, and the mapping
of these beliefs into a planning problem instance in order taredict the plan of the
agent of interest, will then be discussed. Also discussed Ivwhle the expansion of
this problem to accommodate state-of-the-art plan recogimon approaches. Finally,
the component integration within the DIARC (Scheutzet al., 2013) architecture that
enables the theory being proposed on a real robot will be pesged, along with the
evaluation on a case study. This section presents and dissas techniques and results
presented as part of (Talamadupulat al., 2014a).

6.1 Motivation

Consider a disaster response scenario inspired by an Urbarai$h and Rescue
(USAR) task that occurs in a facility with a long hallway. Roomsl and 2 are at the

extreme end of one side, whereas rooms 3-5 are on the oppaside (see Figure 6.1).
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Figure 6.1: A map that represents the human-robot teaming scenario digssed in
this section.

Consider the following dialogue exchange:

H: Comm. X is going to perform triage in room 5.
R: Okay.

H: | need you to bring a medical kit to room 1.
R: Okay.

The robot R has knowledge of two medical kits, one on each side of the haly
(in rooms 2 and 4). Which medical kit should the robot attempt 6 acquire? If
commander X CommXoes not already have a medical kit, then she or he will atteoh
to acquire one of those two kits. In order to avoid ine ciencycaused by resource
con icts (e.g., wasted travel time), the robot ought to attenpt to acquire the kit that
is not sought by the human teammate.

The medical kit that Commill select depends on a variety of factors, including {
but not limited to { the duration of each activity and thepriority given by Commi$
each activity. If the commander had goals to perform triagenimultiple locations, the
medical kit he or she would acquire would be determined by whtiage location she
or he visits rst. Additionally, the beliefsabout the environment may di er between
the robot and human teammates. Consider a variation of the pwious dialogue /

scenario (where previously there existed only one medical kn room 2):
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| just put a new medical kit in room 4.
: Comm. X is going to perform triage in room 5.
: Okay.

| need you to bring a medical kit to room 1.

T I » I T

. Okay.

While the robot now knows there are two medical kitsCommlkkely only knew
of the original one, and will thus set out to acquire that onegespite it being at the
opposite end of the hallway. Therefore, successful predat of a human teammate's
behavior will require modeling that teammate, assuming her ahe adopts a rational
policy to achieve multiple goals given one's best estimatéd their belief state. One
way of performing such modeling is by leveraging thglanning system found within
the robotic architecture. In the following, the process of wdeling beliefs, casting
them into a planning problem instance, predicting the plan fothe agent of interest
using this problem instance, and nally achieving coordin#on via that predicted

plan will be detailed.
6.2 Belief Modeling

Beliefs are represented in a special component that handleslief inference and
interacts with various other architectural components. Itis clari ed at the outset
that \belief" is used in the rest of this section to denote theobot's knowledge, and
not in the sense of \belief space". Beliefs about state arepesented by predicates
of the formbel ; ), which denote that agent has a belief that is true. Goals are
represented by predicates of the forrgoalk ; ;P ), which denote that agent has a
goal to attain  with priority P.

Belief updates are primarily generated via the results of thsemantic and prag-

matic analyses performed by the natural language procesgisubsystem, which are
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submitted to the belief component (the details of this proas are described in (Briggs
and Scheutz, 2011)). While the interpretation of natural laguage communication al-
lows for the most direct inferences about an interlocutor'selief state, the system
does allow for belief updates to be generated from other inpmodalities as well

(e.g., the vision system).

In order for a robot to adopt the perspective of another agent, we must consider
the set of all beliefs that the robot ascribes to. This can be obtained by considering
a belief modelBel of another agent , dened asf jbel; ) 2 Belsys g, where
Belsr denotes the rst-order beliefs of the robot (e.g.pbelself; at (self; room1))).
Likewise, the set of goals ascribed to another agent can beahed: fgoal( ; ;P ) j
goal ; ;P ) 2 Beélser .

This belief model, in conjunction with beliefs about the gda / intentions of
another agent, will allow the robot to instantiate a plannirg problem. Here, it is
important to note that all agents share the same basic belefbout the initial task
goal and the initial environmental state (beliefs about sudequent goals and states

can di er among agents, see Section 6.3.1 for details).

Case Analysis

First, the integrated architecture's handling of the motivding scenario is examined.
The simple case is where the robot has knowledge of the looatiof both medical kits
and the location of CommXhe robot also believes that the commander's belief space
is equivalent (at least in terms of the relevant scenario dails) to its own. This belief

space is described below:

96



Belser = fat(mk1; room?2); at(mk2; room4);
at(commX; room 3); bel(commX; at (commX; room 3));
be(commX; at (mk1; room2));

belcommX; at (mk2; room4))g

For the sake of future brevity, the predicates describing #robot's beliefs about the
beliefs of Commill be expressed using the notatiorBel.ommx Belss , and the

predicates describing the robot's beliefs about the goal§ GommXsG¢,  Belge :

Belcommx = fat(mk1; room?2); at(mk2; room4);

at(commX; room3))g

Gc>< = fg

A planning problem (as speci ed in Section 6.3.1) is subm#d to the Sapa Replan
planner. SinceGc, is initially an empty set, no plan is computed by the planner.
However, the robot then receives the rst piece of natural laguage input: \Comm. X
is going to perform triage in room 5 ". As a result of the processing from the nat-
ural language subsystem, including applying pragmatics les of the form described

in (Briggs and Scheutz, 2011), the robot's belief model @ommiX updated:

Beleommx = fat(mk1;room2); at(mk2; rooma4);
at(commX; room3))g

GQ< =

f goal(commX; triaged (commX; room1); normal )g

The new problem (with an updatedGc, ) is submitted to the planner, which returns

the following plan:
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commx = move(commX; room 3; hall 5);
move(commX; hall 5; hall 6);
move(commX; hall 6; room4);
pick_up(commX; mk 2; room4);
move(commX; room 4; hall 6);

move(commX; hall 6; roomb);

conduct.triage (commX; room 5)i

This plan is used by the robot to denote the plan thatCommix likely utilizing. The
robot is subsequently able to infer that the medical kit in rom 4 has likely been
taken by Comm>nd can instead aim for the other available medkit, thus sgessfully

achieving the desired coordination.

6.3 Using Automated Planning

Automated planning representations are a natural way of ending an agent's
beliefs such that a simulation of those beliefs may be prodettto generate information
that is useful to other agents in the scenario. These repregations come with a
notion of logical predicates which can be used to denote the agent's current belief:
a collection of such predicates is used to denotestéate Additionally, actions can
be used in order to model the various decisions that are awdile to an agent whose
beliefs are being modeled; these actions will modify the ais beliefs, since they
e ect changes in the world (state). Finally, planning represntations can also be used
to specify goals which can be used to denote the agent's intentions and/or dees.

Together, these three features { predicates, actions, andas { can be used
to create aninstance of a planning problem, which features a domain model and
a specic problem instance. Formally, a planning problem = HhD; i consists of
the domain modelD and the problem instance . The domain model consists of

D = hT;V;S;A, whereT is a list of the objecttypes in the model; V is a set of
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variables that denote objects that belong to the types 2 T; S is a set of nhamed
rst-order logical predicates over the variabled/ that together denote the state; and
A is a set of actions orperators that stand for the decisions available to the agent,
possibly with costs and/or durations.

Finally, a planning problem instance consists of = hO;l; Gi, whereO denotes
a set of constants (objects), each with a type correspondirtg one of thet 2 T;
| denotes theinitial state of the world, which is a list of the predicates fromS
initialized with objects from O; and G is a set ofgoals which are also predicates from
S initialized with objects from O.

This planning problem = hD; i can be input to an automated planning system,
and the output is in the form of aplan = héy:::d\i { which is just a sequence
of actions such that8i;a; 2 A, and héy :::d,i are each copies of the respectives

initialized with objects from O.
6.3.1 Mapping Beliefs into a Planning Problem

In this section, we formally describe the process of mappirige robot's beliefs
about other agents into a planning problem instance. First, he initial state | is
populated by all of the robot's initial beliefs about the aget . Formally, | =
f jbel; )2 Belootd, Where is the agent whose beliefs the robot is modeling.
Similarly, the goal setG is populated by the robot's beliefs of agent's goals; that
is,G=f jgoal; ;P ) 2 Belootd, WhereP is the priority assigned by agent
to a given goal. *  This priority can be converted into a numeric quantity as the
reward or penalty that accompanies a goal. Finally, the set afbjects O consists of

all the objects that are mentioned in either the initial stak, or the goal description:

INote that in this work, the priority is not used; however, it is intro duced here as it is part of
the de nition introduced by Briggs & Scheutz in 2011.
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O=fojo2( j 2([ G)g.

Next, the focus is shifted to the domain modeD that is used in the planning
process. For this work, it is assumed that the actions avalbiée to an agent are known
to all the other agents in the scenario; that is, the possilify of beliefs on the models
of other agents is ruled out (of course, rolling back this assption would result in a
host of interesting possibilities { this is alluded to in Sen 6.3.3). However, even
with full knowledge of an agent 's domain modelD , the planning process must be

carried out in order to extract information that is relevantto the robot's future plans.

6.3.2 Coordination Using Plans

Before illustrating how coordination is achieved, it is udal to de ne the notion of
coordination as used in this work, and the assumptions thatra made to achieve such
coordination. For the purposes of this workcoordination is de ned as the robotic
agent being able to reproduce the plan of a human agent. Morerinally, given a
human agent's planning domain moddD |, initial state I, and goal descriptionG, the
claim is that the robotic agent can come up with a plan that is a prediction of
agent 's plan.

In order to facilitate coordination between agents using # robot's knowledge of
the other agent 's beliefs, two separate planning problems are utilized,g (robot)
and (agent ) respectively. The robot's problem consists of its domain odel
Dr = hTR; Vr; Sr;Ari and the initial planning instance r, which houses the initial
state that the robot begins execution from as well as the inél goals assigned to it.
The robot also has some beliefs about agent these beliefs are used to construct

'S problem = D ; i following the procedure outlined previously (note that
currently, the same domain model is used for the robot and age ; i.e., Dr and D

are the same). The assumption made in this section is that dhree constituents of
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are known fully and correctly; in Section 6.3.3, one of these relaxed.

Both of these planning problems are given to separate instags of the planning
system, and respective plansr and  are generated. A key di erence between the
two plans must be pointed out here: although g is a prescriptive plan { that is, the
robot must follow the actions given to it by that plan, is merely aprediction of
agent 's plan based on the robot's knowledge of's beliefs.

In the case of coordination with agent that needs to happen in the future, the
robot can turn to the simulated plan  generated from that agent's beliefs. The crux
of this approach involves the robot creating a new goal forself (which represents
the coordination commitment made to the other agent) by usim information that
is extracted from the predicted (or simulated) plan of that agent. Formally, the
robot adds a new goaty. to its set of goalsGg 2 R, whereg. is a rst-order predicate

from Sr instantiated with objects extracted from the relevant actons of agent in

6.3.3 Plan Recognition

So far, it has been assumed that the goals @ommare known completely. For-
mally, it has been assumed in Section 6.3.2 th& is known completely as part of
in order to achieve coordination (also de ned in Section 6.38). This section relaxes
that assumption, since it is unlikely to hold for many real wdd scenarios, given that
only a belief of the likely goal of agent based on updates fronCommig available;
this may not be a full description of the actual goal. Furtherin the case of an incom-
pletely specied goal, there might be a set ofikely plans that the commander can
execute, which brings into consideration the issue of plam goal recognition given a
stream of observations and a possible goal set. This alsoses the need for an online

re-recognition of plans, based on incremental inputs or afrwations. In this section,
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a plan recognition approach that takes these eventualitiaato account is presented.
The \relaxation" is that now instead of knowing the constitients of G fully, there
may be aset of goals of which the actual goal that agent may be trying to achieve

is only a part; and thusG

Goal Extension and Multiple Plans

To begin with, it is worth noting that there can be multiple plans even in the presence
of completely speci ed goals (even if agent s fully rational). For example, there may
be multiple optimal ways of achieving the same goal, and it it obvious beforehand
which one agent is going to follow. In the case oincompletely speci ed goals, the
presence of multiple likely plans become more obvious. Thtiee more general case
is considered where agent may be following one of several possible plans, given a
set of observations.

To accommodate this, the robot's current belief of agent's goal,G, is extended to
a hypothesis goaket containing the original goal G along with other possible goals
obtained by adding feasible combinations of other possibfgedicate instances not
included inG. To understand this procedure, let's rstlook at the setS, de ned as the
subset of the predicates frons which cannot have di erent grounded instances present
in any single goal. The existence of is indeed quite common for most scenarios,
including the running example where the commander cannot lretwo di erent rooms
at the same time; hence for example, one need not include bat{commX,room3)
2 and at(commX,room4)in the same goal. Hencat (?comm, ?room)is one of the
(lifted) predicates included in$.

Now, the set is de nedQ = fqj oo 2 Gg\ S as the set of such liftecuinrepeatable

2Note that agent and Commare used interchangeably in this discussion, and indicate the same
agent.
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predicates that are already present i, whereqo refers to a lifted domain predicate
g2 S grounded with an object from the set of constant®, and similarly, qis the lifted
counterpart of the grounded domain predicatep. Following this representation, the
set di erence SnQ gives the unrepeatable predicates in the domain that are ads in
the original goal, and its power set gives all possible comlations of such predicates.
Then, let B, = (P(Sn Q))o denote all possible instantiations of these predicates
grounded with constants fromO. Similarly, B, = P((Sn é)o) denotes all possible
grounded combinations of the repeatable predicates (notetine case oB; the power
operation was being performed before grounding to avoid reftions). Then the
hypothesis set of all feasible goals can be computed as #G6j G2 B, [ B,g.
Identifying the set $ is an important step in this procedure and can reduce the
number of possible hypotheses exponentially. However, to keathis computation,
some domain knowledge is assumed that allows us to determwwlich predicates
cannot in fact co-occur. In the absence of any such domain kmedge, the setS
becomes empty, and a more general G j G 2 P S, g can be computed that
includes all possible combinations of all possible grourdiénstances of the domain
predicates. Note that this way of computing possible goals maesult in many un-
achievable goals, but there is no obvious domain-indepemtlevay to resolve such
con icting predicates. However, it turns out that since acheving such goals will in-
cur in nite costs, their probabilities of occurrence will educe to zero, and such goals

will eventually be pruned out of the hypothesis goal set undeonsideration.

Goal / Plan Recognition

In the present scenario, there is thus a set of goals that age may be try-
ing to achieve, and observations of the actions agent is currently executing (as

relayed to the robot by CommYAt this point one refers to the work of Ramirez
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and Ge ner (Ramrez and Ge ner, 2010) who provided a technige to compile the
problem of plan recognition into a classical planning probin. Given a sequence of
observations , the probability distribution over G 2 is recomputed by using a
Bayesian updateP (Gj ) / P( jG), where the prior is approximated by the function
P(jG) = 1=(1+e (S))where (G; ) = Cy(G ) GCuo(G+ ).

Here ( G; ) gives an estimate of the di erence in cosC, of achieving the goal G
without and with the observations, thus increasindg®( jG) for goals that explain the
given observations. Note that this also accounts for agentshieh are not perfectly
rational, as long as they have an inclination to follow cheagp (and not necessarily
the cheapest) plans, which is a more realistic model of hum&anThus, solving two
planning problems, with goalsG and G+ |, gives the required probability update
for the distribution over possible goals of agent. Given this new distribution, the
robot can compute the future actions that agent may execute based on the most

likely goal.

Incremental Plan Recognition

It is also possible that the input will be in the form of a strean of observations,
and that the robot may need to update its belief as and when newabservations are
reported. The method outlined in the previous section wouldequire the planner
to solve two planning problems from scratch for each possbgoal, after every new
observation. Clearly, this is not feasible, and some sort ofcremental re-recognition
is required. Here the advantage of adopting the plan recogiuh technique described
above becomes evident: by compiling the plan recognitiongiylem into a planning
problem, the task of updating a recognized plan becomes a l@aming problem with
updates to the goal state (Talamadupuleet al., 2014b). Further, every new observa-

tion does not produce an update, since in the event that the agt being observed
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Figure 6.2: A schematic of the plan recognition framework described ifnis section.

is actually following the plan that has been recognized, thgoal state remains un-
changed; while in the case of an observation that does not agrwith the current
plan, the goal state gets extended by an extra predicate. D@nining the new cost
measures thus does not require planning from scratch, andhdae computed by using

e cient replanning techniques.

A Framework for Coordination & Recognition

In Figure 6.2, a schematic of the system that can handle the pigrediction and plan
recognition described in this chapter is presented. To deswe: there are two separate
instances of theSapa Replanplanner that are run. The rst instance takes care of
the planning for the robot, while the second instance is entsted with producing the
predicted plan of the agent .

The goal manager on board th®IAROntegrated architecture sends out informa-

tion to both of these planner instances in order to enable thglanning process. To
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the robot's instance, the goal manager sends out informaticabout the initial state,
goals, and the domain model, as well as updates to these thrdaull details of this
process can be found in Chapter 7. To the instance of agent the goal manager
sends information (from the belief modeling component, asittined in Section 6.2)
about the initial state, model, and possible goals of agent. Here the framework
enables one of two possible ows; if the set of agents goals is known completely,
then it is sent along with the initial state and the model, asn Section 6.3.1. If the
goal set isnot known completely, then the process described in the prev®sgection is
used, and the goal recognition component (in green) is empéal to send the possible
goals of agent to the respective planner instance.

Once an observation; 2 is received by the goal recognition component, the
probability distribution over the set of goals that agent may be trying to achieve
is recomputed, as speci ed in Section 6.3.3. In the worst &ggghis computation may
have to occur for every observation; that is received (if all the observations come in
piecemeal), and can become a very intractable process. Tlog tanked goal from the
set is then sent to the planner component. There is currentf work underway that
considers ways of approximating this update process, and kiag it more tractable.

This is a prime candidate for future extensions.

6.4 Implementation

For the proof-of-concept validation, the Willow Garage PR2abot (Willow Garage,
2010) was used. The PR2 platform allows for the integratiorf ®OS localization and
navigation capabilities with the DIARC architecture. Compaments in the system
architecture were developed in the Agent Development Envinment (ADE), which
is a framework for implementing distributed cognitive robtic architectures. Speech

recognition was simulated using the standard simulated speh recognition in ADE
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(which allows input of text from a GUI), and speech output was mvided by the

MaryTTS text-to-speech system.

Belief Component

The belief component in DIARC utilizes SWI-Prolog in order to epresent and reason
about the beliefs of the robotic agent (and beliefs about hefs). In addition to
acting as a wrapper layer around SWI-Prolog, the belief compent contains methods
that extract the relevant belief model sets described in S#an 6.2 and handling the
interaction with the planner component. Speci cally, thisinvolves sending the set
of beliefs and goals of a particular agent that needs to be meldd to the planner.
Conversion of these sets of predicates into a planner pramlés handled in the planner

component.

Planner

In order to generate plans that are predicated on the beliets other agents, theSapa
Replan (Talamadupula et al., 2010a) planner is employed; more details about the
planner may be found in Section 7.2.

Currently, the plan recognition approach described in Seicn 6.3.3 has not been
implemented fully on the Sapa Replan planner. However, the &pters preceding this
one have demonstrated that the planner can be extended to dedth various forms of
information that arrive during execution { speci cally (and in order) changes to the
goals, to the world state, and to the agent's model. Thus thexesting Sapa Replan
system can be modi ed to handle (action) observations durg execution time in
order to support the plan recognition approach previouslyutlined. This modi cation
would entail the creation of the components outlined in greein Figure 6.2. Note

that this will require that the problem of translating the robot's sensory feedback (or
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another agent's utterances to the robot) to a high-level repsentation be handled;
this is a problem that is non-trivial (see Section 6.6).

It should be clari ed that since an entirely di erent instance of the planner is run
in order to simulate/predict the plan of the agent , the only extension that needs
to be provided to the execution monitor component of the plarer (see Chapter 7
for full details) is a way of specifying high-level observeins about the action that
was performed to the planner. The syntax for such an update maoriginate in the
operator update syntax described in Section 5.1.1, and idtlas a future extension to

the currently implemented system.

Plan Recognition

For the plan recognition component, the probabilistic plarrecognition algorithm de-
veloped by Ramirez and Ge ner (Ramrez and Ge ner, 2010) issed. The base
planner used in the algorithm is the version of greedy-LAMA (Rhter et al., 2008)
used in the sixth edition of the International Planning Comgtition in 2008. To
make the domain under consideration suitable for the basegpiner, the durations of
the actions were ignored while solving the planning problesyduring the recognition

phase.

6.5 Empirical Evaluation

In this section, a demonstration of the plan prediction cagallities described in
Section 6.3 is presented through a set of proof-of-conceptidation cases. These cases
include an implementation with the full robotic architectuwre on an actual robotic
platform (Willow Garage PR2), as well as a more extensive set cases that were run
with a limited subset of the cognitive architecture in simudtion. These validation

cases are not intended to be a comprehensive account of thadiuonality that the
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Robot Condition Cases with no conict: Opt; | Cases with no con ict: Opt;

Robot at room2 55.83% 47 .50%
Robot at room3 25.0% 33.33%
Robot at room3 w/ | 100.0% 91.67%

mental modeling

Table 6.1: Performance of the robot.

belief modeling and planning integration a ords, but rathe indicative of the success
of the architectural integration (which also seeks to higight some interesting and
plausible scenarios in a human-robot teaming task). First, aideo of an instance
similar to the case described in Section 6.2 evaluated on a PRobot and annotated
with the robot's knowledge of agent 's beliefs is presented, as well as its prediction

of the commander's plan:http://tinyurl.com/beliefs-anno .

6.5.1 Simulation Runs

The scenario shown in the video was also utilized to performnaore extensive set
of simulations. The number of medical kits the robot belie®@Commknows about
(2 vs. 2), the believed location of each medical kit (rooms 3); and the believed
goals ofCommgriage in room 1, room 5, or both) were all varied. The commater
is believed to always start in room 3. This yields 90 distinctases to analyze. The
resulting prediction of Comn'sXplan is then compared with what one would expect
a rational individual to do. However, in some scenarios ther@e multiple optimal
plans that can be produced by di erent strategies. The rst srategy, Opty, is where
the individual favors picking up medkits towards the beginimg of their plan (e.g. at
their starting location), and the second,Opt,, is where the individual favors picking

up medkits toward the end of the plan (e.g. in the same room asdhriage location).
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The results of these simulation runs show that the robot suessfully predicts
which medical kit CommWill choose in 90 out of 90 cases (100.0% accuracypipt,
is assumed. IfOpt, is assumed, the robot is successful in predicting 80 out of 90
cases correctly (88.9% accuracy). This demonstrates (fonastablished reasons) a
bias in the planner for plans that comport withOpt; behavior. Nonetheless, these
results con rm that the mental modeling architecture can besuccessful in predicting
the behavior of rational agents.

Next, the following question was evaluatedwhat does this mental modeling ability
give the system performance-wi®e The medical kit selection task was compared
between a robot with and without mental modeling capabiliies. The robot without
the mental modeling capabilities still looks for a medkit bucan no longer reason
about the goals ofComm 20 cases were considered: 20 combinations of medical kit
locations where the two kits were in di erent locations (ashis would be a trivial case)

3 possible goal sets dfommpas described above) 2 sets of beliefs about medkit
existence (as described above). To demonstrate the e cacy the belief models, also
consider were two di erent starting locations of the robot including now room 3 in
addition to room 2 - as there would naturally be more selectiocon icts to resolve if
both the robot and Commstarted in the same location. The evaluation calculated the
number of cases in which the robot would successfully attetrp pick the medical kit
not already taken by the human teammate rst. The results ardabulated in Table
I. As shown, the mental modeling capability leads to signi cat improvements over

the baseline for avoiding potential resource con icts.

6.5.2 Plan Recognition

Although the plan recognition component was not fully integated into the Sapa

Replan planner, two proof of concept scenarios to illustrate its @$ulness were con-
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Figure 6.3: Plan Recognition: Case 1.

Figure 6.4: Plan Recognition: Case 2.

sidered: reactive, and proactive. In theeactive case, the robot only knows agent's
goal partially: it gets information about agent having a new triage goal, but does
not know that there already existed a triage goal on anotheotation. In this case,
by looking at the relative probabilities of all triage relaed goals, the robot is quickly
able to identify which of the goals are likely based on incomg observations; and it
reacts by decon icting the medkit that it is going to pick up. In the proactive case,
the robot knows agent 's initial state and goals exactly, but agent now assumes
that the robot will bring him a medkit without being explicit ly asked to do so. In
such cases, the roboadopts the goal to pick up and take a medkit to agent by
recognizing that none of agent 's observed actions seem to be achieving that goal.

The reactive scenario was evaluated with the help of a simidal case similar to
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the one rst introduced in Section 6.1. In this case, the rolts hypothesis (set)
on the possible goals of Commander XComm>Xontains two goals { one where the
commander conducts triage imooml, and another where the commander conducts
triage in room5 The goal of the plan recognition component is to accept obrsations
as they come in piecemeal, and use those observations to eatd the belief in each
one of these hypothesized goals. Figure 6.3 illustrates theesario, as well as the
observations that are given to the robot. The graph summars the robot's belief
in the two goals in the hypothesis set as each observation cesnin, with the red
probability standing for the room5goal and the blue probability denoting theroom1
goal. Akink is evident in this graph, between observations 1 and 5. Thigsults from
the fact that as the robot receives observations regardingomns<actual executed
plan, the plan recognition module is reasoning about the miokkely goal that the
plan observed up until the current point is achieving. As it beomes more and more
evident from the observations thatCommiX moving towardsrooml(and not room35,
the robot's belief in that particular goal converges to proability 1.0.

A similar case is illustrated in Figure 6.4; however, noticehe di erence in the
map layout from the previous case { in this case, there is a Wadow that separates
the hall4 and hall5 areas. This topography force€omm make a choice at the
very beginning of the plan, as evidenced in the rst observain. Once this choice
is made, the robot's belief in the goal that is supported by tht choice (in this case,
heading toroomY) steadily increases, and the kink that is observed in the pr®us

case is no longer present.

6.6 Limitations

One of the bigger limitations of this work concerns the planecognition based ap-

proach outlined in Section 6.3.3. The current approach wasksince it takes a list of of
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high-level actions (along with the objects/parameters usg performed by the agent
of interest as input from a third agent. However, the assumpin that observations
are given in such a structured, high-level form is non-trial. Indeed, much research
has gone into the observational uncertainty inherent in r@gnizing plans among in-
teracting agents (Huber and Durfee, 1993), to go along with search on planning for
sensor based observations for plan and activity recognitiqPatterson et al., 2005)
and object recognition (Gremban and lkeuchi, 1994). The iett behind pointing
out this limitation is to acknowledge the fact that in robotics communities and fora
similar to those that some of the work in this dissertation hs previously appeared
in, there is a very real question regarding the availabilityof high-level observations
that can be usedas is by a planner and plan recognition module. Though this work
does not address this question further, it is a promising aaeof future research.
Apart from this limitation, the method outlined in Section 6 dso makes some
restrictive assumptions when modeling the (human) agent afterest. To begin with,
it assumes full knowledge about that agent. That is, it assues that the action model,
initial state, and entire goal set of that agent is fully knowm, in order to simulate the
plan of that agent. Even for a robotic agent that is completgl under the control of
the planner, this is an unrealistic assumption to make, sieahe action model is rarely
known completely { there are many methods to deal with such aompleteness, as
outlined in Section 1.1.5. Similarly, the current method &o assumes that the agent
being modeled is a perfectly rational being and will not sale actions at random.
Finally, there is work currently underway that seeks to relaxthe very restrictive

assumption that all of the goals of the agent of interest arenown beforehand.
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Chapter 7

FIELDED PROTOTYPE

Evaluating the contribution of work that discusses an ente problem area, such as
Human-Robot Teaming, and its implications in another estaidhed area { automated
planning { is fraught with three di erent issues:

1. Coverage: Surveying the previous work in the areas of Hum&obot Interac-

tion, and automated planning; and linking it to the approacles proposed.

2. Evaluation: Reporting results to determine if the proposd ideas achieve the

desired advances.

3. Prototype: Devising an integrated prototype to evaluatehe novel work that is

proposed by the work.

Of these, the issue otoveragewas addressed in Chapter 2, where prior work that
considers the intersections in the interactions of humanspbots, and planners was
presented. Further examples of related work will be presemtén the following Sec-
tion 7.1. Evaluations for each of the contributions were presented at the ends of
the respective chapters. In the rest of this chapter, thprototype issue is tackled by
presenting a motivating example of a Human-Robot Teaming t&s and describing
the kind of integration among various components that is caed out to make this
possible. Details are also provided on th8apa Replanplanning system, which is
the main systems-oriented artefact of this dissertation, ral incorporates all of the

human-robot teaming (HRT) related extensions described irhts document.

114



Belief Path
Modeling Planning

Intent Recognition Sensing
Activity Recognition Dynamics

Task Planning

A

Goals
Model Updates
Trajectory
Constraints
Dialog

. Hypotheticals
Planning

Reports
ion
Questions H Excuses
[ ] H

Active

Negotiation Model Elicitation

= ——

Figure 7.1. A schematic of the various interactions present in a simplaiman-robot
teaming task.

7.1 A Motivating Example

Consider a robotic agent that is employed in lieu of human emgency personnel
in an urban search and rescue setting. The agents that conste this scenario are as
follows | Human Agents: Commander X, CommanderY, CommanderZ; Robotic

Agent: R.

R is sent into a building by CommanderZ with a nominal description of
the building's layout, and an initial goal { to gather a medial kit from

a speci ¢ location and deliver it to CommanderX. As R is proceeding
through the building, however,Z (who is located in another location but
can communicate withR) informs the robot that there may be wounded
people in rooms in that building, and that the robot should cbkck for

such people if possible. Additionally,R encounters CommanderY in
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the building, who asks it to void the earlier (more importanj goal of
nding the medical kit and delivering it; and to follow instead. R declines
while indicating urgency and interruption in its voice, andnegotiates a
commitment to meetY wherever the commander happens to be when it
achieves its current goalR then gathers the medical kit and proceeds to
X's location to deliver it; however, arriving outside that dar, it senses
that the door is closed. This triggers a further query to the &ndler,
Z, who tells the robot to try a new action { pushing the door open R
tries this, succeeds, and delivers the medical kit t& {who reinforces the

commitment to go and meetY at once.

Even in this simple task, various sub-problems must intera@nd be solved in
parallel to enable the robot to act autonomously and intelgjently in carrying out

its tasks as part of the human-robot team. Some of these praphs (outlined in

Figure 7.1) are presented below:

1. Task Planning: Agents must be able to plan for changing or oditional goals
like the medical kit (Talamadupulaet al., 2010a), elaboration of the goals asso-
ciated with the task (Baral and Zhao, 2008) as well as trajecty constraints like
‘remain undetected' on the form of the plan (Mayeet al., 2007). Additionally,
the task planner may have to deal with updates to the model thaare either

learned, or speci ed by humans (Cantrelket al., 2012).

2. Path Planning: Autonomous robots must be endowed with capdities of plan-
ning their paths. These may include planning with goal-origed actions like
looking for the medical kit (Simmons and Koenig, 1995), ndig the shortest

path to the room that holds the kit (Koenig et al., 2004), obeying constraints
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on the trajectories of the path (Sa otti et al., 1995) or planning for agents that

exhibit di erent dynamics, like UAVs and AUVs (McGann et al., 2008).

. Dialog Planning: Robots need to skilled at both recognizg and producing sub-
tle human behaviors vis-a-vis dialog (Briggs and ScheutzQ23) { for example,
in the above scenario, the agent needs to both understand tlseperiority in

Commander Y's voice when requesting a new task, as well as iotats own

response with urgency in order to indicate that the task at had cannot be
interrupted. Negotiation is another possibility, for whichthe robot needs to be
informed by the task planner regarding excuses (Gebelbesaket al., 2010) and

other hypotheticals.

. Belief and Mental Modeling: The agent must be in a positiono model the
beliefs and mental state of other agents that are part of thecenario (Briggs
and Scheutz, 2012); in this case, the agent may want to modeb@mander Y's

mental state to determine her location at the end of the rst ask.

. Intent and Activity Recognition: Closely tied in to both dialogue and mental
modeling is the problem of recognizing the intents of, and tties performed
by, other agents (Vailet al., 2007). Humans are endowed with these capabilities
to a very sophisticated degree, and agents that interact antdam with humans

must possess them as well.

. Architecture: Finally, the integrated architecture that al these processes ex-
ecute in plays a big role in determining the planning capaliles of the au-
tonomous system. A good control structure must display pregmmability,
adaptability, reactivity, consistent behavior, robustnas, and extensibility (Alami

et al.,, 1998). By dint of having to interact with humans, it must al® ful Il the
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notions of attending and following, advice-taking, and tdsng (Konolige et al.,
1997). Finally, it must be able to detect and recover from faire, and tide all

the other planning components over that failure.

7.2 Planning System

This work builds on and implements new features into th&apa Replan(Ta-
lamadupula et al., 2010a) planner, an extension of the metric temporal planne
Sapa(Do and Kambhampati, 2003). Sapa Replanis a state-of-the-art planner that
can handle actions with costs and durations, partial satiattion of goals, and changes
to the world and model via replanning. Of these, the most refant to the problem of
dynamic natural language input is the ability to model and us changes to the world
to the robot's advantage. Sapa Replanadditionally handles temporal planning and
partial satisfaction. The system contains an execution mdor that oversees the
execution of the current plan in the world, which focuses thplanner's attention by
performing objective (goal) selection, while the planneniturn generates a plan using
heuristics that are extracted by supporting some subset ohdse objectives.

The planner consists of three coupled, but distinct parts:

Search:Sapa Replanperforms a weighted A*, forward search usinget bene t

as the optimization criterion.

Heuristic: The heuristic used to guide the planner's searcls based on well-
known relaxed planning graph heuristics where, during sedr, relaxed solutions
are found in polynomial time per state.Sapauses a temporal relaxed planning
graph that accounts for the durations of actions when calcating costs and
nding relaxed solutions. In the partial satisfaction plaming extensions, the

heuristic also performs online goal selection. In essentesolves for all goals
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(hard and soft) in the relaxed problem and gives a cost for relaing each of
them (1 for unreachable goals). If the cost of reaching a soft goal gseater
than its reward, it removes that goal from the heuristic calglation. If the cost
of reaching a hard goal is in nity, it marks a state as a dead eh Finally,

the di erence between the total reward and total cost of thee@maining goals is

calculated and used as the heuristic value.

Monitoring / Replanning: The extensions for replanning regire the use of an
execution monitor, which takes updates from the human-rolbdeam architec-
ture (in this case). Upon receiving an update, the planner udes its knowledge
of the \current state" and replans. Replanning itself is posd as a new partial
satisfaction planning problem, where the initial and goaltates capture the

status and commitments of the current plan (Cushinget al., 2008).

To see how the planning system copes with open environmentesarios, it is
important to understand the details of its execution monitong component. This is
arguably the most important part of the planning system for he problem at hand,
as its focus is on handling unexpected events and gatheringw information for the
planner. It serves as an interface between the integratedchitecture (discussed in
the next section) and the planning engine.

New sensory information, goals, or facts given by a human corander can be sent
to the planner at any time, either during planning or after a pan has been output.
Regardless of the originating source, the monitor listengif updates from a single
source in the architecture and correspondingly modi es thplanner's representation
of the problem. Updates can include new objects, timed everfise., an addition or
deletion of a fact at a particular time, or a change in a numecivalue such as action

cost), the addition or modi cation of a goal (or its deadlineand/or reward), and a
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time point to plan from.

All goals are on propositions from the set of boolean uents ime problem, and
there can only be one goal on any given proposition. In the defit setting, goals are
hard, lack deadlines and have zero reward. All elds in an update speci cation,
with the exception of \:now" (representing the time that the planner expects to
begin executing the plan), may be repeated as many times agju&ed, or left out
altogether. The intent of allowing such a exible represemttion for updates is to
provide for accumulation of changes to the world in one place

As discussed by (Cushingt al., 2008), allowing for updates to the planning prob-
lem provides the ability to look at unexpected events in the gen world as new
information rather than faults to be corrected. In this setp, problem updates cause
the monitor process to restart the planner (if it is running)after updating its internal

problem representation.
7.2.1 Partial Satisfaction Planning

A Partial Satisfaction Planning (PSP) problem involves adbns and (soft) goals
with varying costs and rewards. This contrasts with classat planning, which focuses
on hard goal achievement. The planning objective is to nd pins with highnet bene t
(cumulative goal reward minus plan action cost) by considerg which goals should
be achieved and which should be ignored due to their high cost other resource
constraints (such as time). The selection process occursrihg an A* search. At
each search state, the planner's heuristic evaluates thestdor achieving individual
goal facts and removes those goals (and supporting actioribpt appear too costly

to achieve. That is, a goal will not be pursued at a given statié the estimated cost

1Since these goals arbard, they can be seen as carrying an in nite penalty; i.e., failing to aclieve
even one such goal will result in plan failure.
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of achievement outweighs the reward.

Goal reward can be viewed as a representation of potential pgrtunities. The
replanning process allows the planner to exploit these asetlproblem changes over
time (i.e., as new updates are sent to the planner). The systeaims to handle
developments in the problem that remain unknown until exedion time, while at the
same time providing an ability to exploit opportunities. When a new update arrives,
it may enable a path to a potential goal. For example, if a newabrway is discovered,
that immediately entails a room and the potential opportuniy to achieve more net
bene t by looking for and perhaps nding an injured person. Bnilarly, if a new hard
goal arrives with a closely approaching deadline, the plaancan generate a new plan
that directly achieves it, ignoring soft goals|hard goals such as these can be looked
at as commitments thatmust be achieved.

In Sapa Replansoft goal choice occurs simultaneously as part of the plantse
forward state-space search. The planner estimates the cadtreaching goals using
its planning graph heuristic and assumes that goals whosehavement cost is higher
than their reward will remain unreached (and thus not be set¢ed for achievement
at a given search state).2  When a plan is found, it is announced to the goal
manager, which then performs its analysis to nd conicts ttat may occur in the
control mechanisms of the robot. UnfortunatelySapa Replars support for all of the
varied functionalities listed previously renders it lesscalable to an increase in the

number of soft goals that must concurrently be pursued by thplanner.

2Note that past versions of the planner performed objective selection upn each problem update
using the same process; however this may lead to the unfortunateoasequence of selecting mutually
exclusive objectives.
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7.3 Integrated Architecture

The Sapa Replanplanner is integrated into the robotic architecture as a nely
created client server that interacts directly with agoal manageras detailed in (Scher-
merhornet al., 2009) (see Figure 7.3). This new server does not manage atexecu-
tion, as the existing goal manager already has that capatyli The planner is viewed
by the goal manager, in e ect, as an external library that augents its internally-
maintained store of procedural knowledge. When a new goal isepented, the goal
manager determines whether there is a procedure already knoto achieve it; if so,
then that procedure is executed, otherwise the goal is sewt the planning component,
which returns a script representation of a plan to achieve thgoal, if one is found. In

the following, we describe these parts and the integratiorf the system in detail.

7.3.1 DIARCControl Architecture

The architecture used to control the robotic agent in the abee scenario (shown
in Figure 7.2) is a subset of thalistributed, integrated, a ect, re ection and cognition
architecture (DIARQ (Scheutzet al., 2007a). DIARCcombines higher-level cognitive
tasks, such as natural language understanding, with lowésvel tasks, such as naviga-
tion, perceptual processing, and speech production (Brignd Scheutz, 2007)DIARC
has served as a research platform for several human subjegberiments in the past
(although none of those were directly related to any of the wk in this disserta-
tion), and is designed with human-robot interaction in mind using multiple sensor
modalities (e.g., cameras for visual processing, microptes for speech recognition
and sound localization, laser range nders for object deteon and identi cation) to
recognize and respond appropriately to user requestBIARCs implemented in the

agent development environmer(Scheutz, 2006), a framework that allows developers
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to create modular components and deploy them on multiple hiss ADEcombines
support for the development of complex agent architecturesith the infrastructure
of a multi-agent system that allows for the distribution of achitectural components
over multiple computational hosts (Scheutz, 2006). Each figtional component is
implemented as aserver. A list of all active ADEservers, along with their function-
alities, is maintained in an ADEregistry. The registry helps in resource location,
security policy enforcement and fault tolerance and errorecovery. When anADE
server requires functionality that is implemented by anotar component, it requests a
reference to that component from the registry, which veri s that it has permission to
access the component and provides the information needed floe two components
to communicate directly.

The ADEgoal manageris a goal-based action selection and management system
that allows multiple goals to be pursued concurrently, so t@ as no resource con icts
arise. When the actions being executed for one goal presentazard to the achieve-
ment of another goal, the goal manager resolves the con ict favor of the goal with
the higher priority, as determined by the net bene t (rewardminus cost) of achieving
the goals and the time urgency of each (based on the time remizig within which to
complete the goals).

The goal manager maintains a \library" of procedural knowldge in the form of
(1) action scripts which specify the steps required to achieve a goal, and (2gtion
primitives which typically interface with other ADEservers that provide functionality
to the architecture (e.g., a motion server could provide amierface to the robot's
wheel motors, allowing otherADEservers to drive the robot). Scripts are constructed
of calls to other scripts or action primitives. Aside from thé prede ned procedural
knowledge, however, the goal manager has no problem-sofyinctionality built in.

Therefore, if there is no script available that achieves a spi ed goal, or actions
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Figure 7.2: A schematic of theDIARGCarchitecture used on the robot.
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Figure 7.3: A schematic showing the interaction of theSapa Replanplanner server
with the ADEnfrastructure.

are missing in a complex script, then the action interpretefails. The addition of
the planning system thus providedDIARCwith the problem-solving capabilities of a
standard planner in order to synthesize action sequences d@ohieve goals for which

no prior procedural knowledge exists.
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7.3.2 Integrating the Planner intoDIARC

The integration uses a new interface to the planner to fadiite updates from the
goal manager. The modi ed version of the planner is encapsigd as a newDIARC
component that provides access to this interface to othekDEservers (although in
practice, the goal manager is the only client of the planningerver). The interface
speci es how the goal manager can send state updates to theumher, and how the
planner, in turn, can send updated or new plans to the goal mager. State updates
are sent whenever relevant data of the requested type is ra@gl via sensors. In the
USAR scenario that is used, for example, information about do®and boxes (which
stand in for humans in the experimental runs) would be constded relevant. In this
manner, the goal managerlters the information that is sent back in the form of
problem updates, to avoid overwhelming the planning systemThese updates can
then trigger a replanning process, which returns a plan in ¢hform of action scripts
that the goal manager can adopt and execute in the same way &sprede ned scripts.
Moreover, the new plan can be added to the goal manager's lbkaowledge base so
that future requests can be serviced locally without havintp invoke the planner. This
plan re-useis applicable only when the relevant parts of the world remaiunchanged,
where relevance is determined by examining the preconditi® of the actions in the
plan. If there is a change in these facts due to updates to theovid, ADEinitiates
replanning via Sapa Replan

The Sapa Replanplanner server starts theSapa Replanproblem update monitor,
speci es the planning domain, and (when applicable) the ssary update types that
are of interest to the planner are sent to the goal manager, drthe planner server
enters its main execution loop. In this loop, it retrieves ne plans from the planner (to

be forwarded to the goal manager) and sends new percepts amlgstatus updates

125



(received from the goal manager) to the planner. If a percepriggers replanning, the
previously executing plan (and script) is discarded and a meplan takes its place.
A closely related issue that crops up when integrating a plaer such asSapa
Replan into a robotic architecture is that actions (and consequeitt plans) take time
to execute on a robot and carry temporal annotations denotinthe time it takes to
execute them. Since execution is happening in an open-woridis entirely possible
that an action takes more time to execute than was planned. T$ problem is cir-
cumvented by assigning conservative time estimates to eaabtion available to the
robotic agent (and consequently the planner). If there isa&tk time during the execu-
tion, the planner simply brings forward the execution of thections that are next in
the plan. Though this approach would fail for certain types foconcurrency exhibited
by actions (Cushinget al., 2007), the USAR scenario that is sought to be solved does
not contain any actions that need to be executed concurregtf . In case an action
takes longer time to execute than even the conservative esfite assigned to it (due
to a failure of some nature), the planner is called into playniorder to provide a new

plan (see Chapter 4).
7.4 Deployment

The integration of the Sapa Replanplanner and theDIARGystem has been suc-
cessfully deployed on various robotic platforms, thus demstrating the reliability
and seamless nature of the integration. Most of the work datad in the previous
chapters was evaluated on a deployed robot in a real-worldttseg: in Chapter 3, the
evaluation results were generated on a Pioneer P3-AT; in Cpi@r 5 on an MDS base,;

and in Chapter 6, the results were generated using a Willow Gage PR2.

3Considering the fact that there is only one robotic agent that can e ect changes in the world in
this scenario, this is not an unreasonable assumption to make.
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Chapter 8

CONCLUSION

This chapter concludes the dissertation by summarizing theontributions of the
work, listing some avenues via which this work may be gainfulextended in the
future, and nally considering some of the broader implicabns and impact resulting
from of this work.

8.1 Summary of Contributions

With the advancement in robotic technology, humans and robsthave come in-
creasingly closer in terms of cooperative interaction anctaming. This dissertation
motivated the use of automated planning technology as a medior in such team-
ing interactions between a human agent and a robotic agentna the challenges to

automated planners arising from this.

Open World Goals

Goals are a key component of autonomous planning and actioim human-robot
teaming scenarios, they become the vehicle through whichetthuman agent delegates
or cedes autonomy and responsibility to the robot. The rst fanning challenge
addressed by this work was the issue of goals that may be spetiin ways that seem
natural to humans, but are hard for current planners to handl. Speci cally, this
issue cropped up when goals were described with respect toemt$ and facts in an
open world{ that is, when those objects and facts may not have been knowmhen
the goal was assigned, and may only have come into the planseknowledge base

much after the initial planning phase was over and the exedoh process was being
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carried out.

A solution to this problem was proposed (Talamadupul&t al., 2010a) that rst
provided a framework for specifying conditional knowledgand rewards known as
open world quanti ed goals (OWQGs). On top of this frameworkan approach that
uses the knowledge speci ed in the OWQGs to intelligently &de sensing costs with
goal rewards was implemented. In addition to these contriltions, there was also the
introduction of the notion of conditional goals, a generated version of the OWQGs
that could allow for the use of expectations on facts (and ceaquently goals) of inter-
est. The OWQGs were implemented in th&apa Replanplanner, and an evaluation
was carried out that showed that using this construct greaglincreased the net reward

collected by the robot upon the execution of its plan.

Changing Worlds

Yet another challenge that is brought to the fore due to havig to plan for a deployed
application like HRT is the need to handle dynamic environmés and ever-changing
world states that can di er from the planner's original coneption. These di erences
can arise due to factors like the agent's own execution { thas, the robot may not
be able to execute the plan exactly as conceptualized by thépner; or simply due
to the presence of other agents that share (and thus changdjet same world and
its constituent states. Furthermore, if a plan once computeis made public, that
may introduce further commitments on that plan due to sharedesources, goals, or
circumstances.

The automated planning community has tried to tackle the prblem of execution
failures and world states changing outside of the planner&xpectation by proposing
various disparate replanning algorithms (c.f. Section 2.3This dissertation proposed

an argument for a better, more general model (Talamadupulat al., 2013b) of re-
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planning problems that involve the plans and goals of multip agents { scenarios
similar to HRT. That model considered the central componentsf a planning prob-
lem together with the constraints imposed by the executionfahe original plan in the
world (before it was interrupted) in creating a new replan. ttwas shown that these
constraints took the form of commitments on the part of an age { either towards
the earlier plan itself, or to other agents in the world. Thiggeneral commitment sen-
sitive planning architecture was shown to subsume past rgpining techniques, and
results were provided to show that di erent past techniques mimized metrics that

were quite varied from each other.

Evolving Models

The third challenge that was handled in this work concernednaassumption that
most current planners make { that agents' action models areomplete and correct,
and thus unchanging. While related work that deals with the prblem of planningwith
incomplete models, this dissertation focused more on thegimem of using available
information to complete the models themselves. This was axuoplished in two ways

{ rst, knowledge from the human was used to add new actions to the model of the
robot. This knowledge was obtained in the form of natural laguage instructions
from the human teammate, which were then processed to creadenew action to
be added to the planner's existing action model of the robat'capabilities (Cantrell
et al., 2012). This work was evaluated with various human subjectand shown to be

e ective at completing the model of the robotic agent in a depyed HRT use case.

Coordination Through Plan & Intent Recognition

In Chapter 6, knowledgeabout a human agent's model was used to augment the

robot's planning capabilities and facilitate coordinatio. This was done by gathering
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observations about the human agent's actions (relayed by ather agent to the robot)

and using those observations to model the mental state of theman agent of interest,
including the goals and current state of that agent (Talamadlpula et al., 2014a). This
information was then used to simulate that human agent's pta so as to coordinate
the robot's own plan with that simulated plan to maximize teaning e ciency, by

minimizing contentions for a speci c resource. This work waalso augmented with
rudimentary plan recognition capabilities to relax some othe assumptions made
initially. Experiments in simulation as well as on a deployérobot in a HRT scenario

con rmed the utility of this approach.

8.2 Future Work

Throughout this dissertation, the existing limitations of the approaches taken
were pointed out; where solutions to these limitations exisd, they were either im-
plemented and described, or written about in a manner such &l future work may
use this document as a starting reference for extensions.

In Section 3.5, work by Joshi et al. (Joshet al., 2012) related to open world goals
was mentioned as an approach complementary to the one adapte this disserta-
tion. Also alluded to was the very real challenge of recognigj objects from noisy
sensor feedback on a robot, and the complete dependence ef¢hrrent OWQG-based
approach on the resolution of this problem by other entities the integrated system.

Section 4.5 went into the limitations of the uni ed approachto replanning that
was proposed in this work, and the potential for future work @sing from addressing
those limitations. The rst of these concerned the evaluabtin o ered in support of
this uni ed approach, and the idea that the compilation presnted in this dissertation
can be used to reduce every kind of replanning problem (witHl ats attendant con-

straints) to a classical planning problem. Such a compilath would be of immense use
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to the replanning problem, since it would unleash fast classl planners that improve
year upon year on to this problem. Another avenue for future wk pertains to the
formalization of the notion of commitment { work in multi-agent systems has con-
sidered this problem in the past, and it would be worthwhile xgloring the marriage
of one (or a combination) of these existing representationgith the uni ed replan-
ning framework presented here. Finally, an immediate area ofterest to planning
researchers is the issue of replanning metrics, how to combihese disparate metrics,
and where realistic numbers that inform these metrics are odned from.

Section 5.5 examined the limitations of the approaches takeo complete the
models used to generate plans for the robotic agent, and wagsimprove upon the
work presented in this dissertation. One clear direction vére further progress can be
made concerns the initial plan recognition methodology olited in Section 6.4 { this
process needs to be fully integrated into th8apa Replansystem in order to become
a plug-and-play service like the rest of the contributionsfahis thesis. There is also
work currently underway on relaxing the assumption that thegoals of the human
agent of interest are known fully to the robot (and hence plarer), and instead trying
to Iter the set of all possible goals of that agent down basedn received observations

about that agent's actions (c.f. Section 6.6).

8.3 Broader Implications

Apart from the contributions detailed above that are relatedto a speci c appli-
cation (human-robot teaming), one of the more general coributions of this work
was the provision of the general underpinnings required toaine a research prob-
lem that holds great promise as a unifying umbrella for fute work in this area {
the human- in-the-loop planningproblem. Section 1.1.5 contained a description of

the two general problems that a planner needs to solve to s#te itself for decision-
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making in such scenarios. The understanding o ered by thisegeralized framework
contributed in a large way to the conception of an integratedystem that could tackle
the crowdsourced planningproblem (Talamadupula and Kambhampati, 2013; Tala-
madupulaet al., 2013a; Manikondeet al., 2014a), with the work being recognized with
a Best Demo' award at the 2014 International Conference on famated Planning

and Scheduling (Manikondeaet al., 2014b).

Additionally, work that has been presented as part of this d&ertation has: pro-
vided research opportunities for undergraduate studentsSéthia et al., 2014); been
published in multiple international workshops, confereres, and journals; been deliv-
ered as talks at various venues; and will form a signi cant paof a tutorial at the

AAAI 2015 conference.
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