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Abstract

Chapman’s paper, ‘‘Planning for Conjunctive Goals,’’ has
been widely acknowledged for its contribution toward un-
derstanding the nature of nonlinear (partial-order) planning,
and it has been one of the bases of later work by others---but
it is not free of problems. This paper addresses some prob-
lems involving modal truth and the Modal Truth Criterion
(MTC). Our results are as follows:

1. Even though modal duality is a fundamental axiom of
classical modal logics, it does not hold for modal truth in
Chapman’s plans; i.e., ‘‘necessarily p’’ is not equivalent
to ‘‘not possibly :p.’’

2. Although the MTC for necessarytruth is correct, the MTC
for possible truth is incorrect: it provides necessary but
insufficient conditions for ensuring possible truth. Fur-
thermore, even though necessary truth can be determined
in polynomial time, possible truth is NP-hard.

3. If we rewrite the MTC to talk about modal conditional
truth (i.e., modal truth conditional on executability) rather
than modal truth, then both the MTC for necessary condi-
tional truth and the MTC for possible conditional truth are
correct; and both can be computed in polynomial time.

1 Introduction
Chapman’s paper, ‘‘Planning for Conjunctive Goals,’’ [2]
has been widely acknowledged as an important step towards
formalizing partial-order planning,and it has been one of the
bases of later work by others (for example, [5, 7, 9, 12, 14]).
Unfortunately, however, Chapman’s work is not free of
problems, and this has led to confusion about the meaning
of his results. Previous papers [5, 9, 14] have pointed out
several of these problems.

One of the fundamental concepts used by Chapman is
the idea of modal truth in plans. We will discuss the details
of this concept later---but a simple version of it is that if P
is a partially-ordered, partially-instantiated plan and p is a
ground literal, then p is necessarily (or possibly) true inP ’s
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final situation if for every (or some) totally-ordered ground
instance P 0 of P , p is true after executing P 0. Chapman’s
Modal Truth Criterion (MTC) purports to give necessary
and sufficient conditions for ensuring that p is necessarily
or possibly true. As we describe below, this paper addresses
several problems with modal truth and the MTC.

Chapman explicitly states and proves the MTC for nec-
essary truth, and claims that by modal duality (i.e., the
equivalence of ‘‘necessarily p’’ and ‘‘not possibly :p’’),
the MTC for possible truth is obtained via a simple reword-
ing of the MTC for necessary truth. But in this paper, we
show that although modal duality is a fundamental axiom
of classical modal logics, it does not hold for modal truth
in Chapman’s plans.1 This has several consequences:

1. The MTC for possible truth is not completely correct: it
provides necessary but insufficient conditions for ensur-
ing possible truth. Furthermore, although necessary truth
in plans can be computed in polynomial time as pointed
out by Chapman, the same is not true for possible truth.
Instead, the problem of computing possible truth in plans
is NP-hard.2

2. We can define a concept called modal conditional truth,
which is similar to modal truth but does not require that
a plan be executable as modal truth does. Necessary
conditional truth and possible conditional truth are duals
of each other, and both can be computed in polynomial
time. Furthermore, if we rewrite the MTC to talk about
modal conditional truth rather than modal truth, then both
the MTC for necessary conditional truth and the MTC
for possible conditional truth are correct.

This paper is organized as follows. Section 2 contains
basic definitions, and clarifications/corrections of some of
Chapman’s terminology. Section 4 presents results about

1Although Chapman does not explicitly state that his usage
is consistent with modal logics, it seems clear to us that this is
what he had in mind. In particular, Chapman explicitly appeals to
modal duality in his proof of the MTC [2, p. 368].

2If modal duality held, then both necessary truth and possible
would be at similar levels of complexity: either both would be
polynomial, or one would be NP-hard and the other co-NP-hard.
Section 5.2 discusses some formulations of planning in which this
occurs.



modal duality, the complexity of modal truth, and the
modal truth criterion, and compares and contrasts these
results with Chapman’s claims, as well as with other related
work. Section 6 contains concluding remarks. Proofs of all
the theorms stated in this paper can be found in [8].

2 Basics
The planning language L is any function-free first-order
language. Since L is function-free, every term is either
a variable symbol or a constant symbol, and thus every
ground term is a constant symbol. We follow the usual
convention of defining an atom to be a predicate symbol
followed a list of terms, a literal to be an atom or its
negation, and a proposition to be a 0-ary atom. Thus, what
Chapman calls a proposition, we call a literal.

A state is any finite collection of ground atoms of L. If a
state s contains a ground atom p, then p is true in s and :p
is false in s; otherwise p is false in s and :p is true in s.

IfT is a finite set of terms, then a codesignation constraint
on T is a syntactic expression of the form ‘t � u’ or ‘t 6� u’,
where t; u 2 T . Let D be a set of codesignation constraints
on T , and � be a ground substitution over T (i.e., a
substitution that assigns a ground term to each variable
in T ). Then � satisfies D if t� = u� for every syntactic
expression ‘t � u’ in D, and t� 6= u� for every syntactic
expression ‘t 6� u’ in D. D is consistent if there is at least
one ground substitution � that satisfies D. If t� = u� for
every � that satisfies D, then t codesignates with u.

A step is a triple a = (name(a); pre(a); post(a)), where
name(a) is a constant symbol called a’s name, and
pre(a) and post(a) are collections of literals called a’s
preconditions and postconditions. A plan is a 4-tuple
P = (s0; A;D;O), where s0 is a state called P ’s initial
state, A is a set of steps, D is a set of codesignation con-
straints on the terms ofP (i.e., the terms in s0 andA), andO
is a set of ordering constraints on the steps of A. P is com-
plete if there is a unique total ordering a1 � a2 � : : : � an
over A that satisfies O, and a unique ground substitution �
over the terms of P that satisfies D. (Note that a complete
plan need not necessarily be executable). Suppose that P
is complete, and let k be the largest integer � n for which
there are states s1; s2; : : : ; sk such that for 1 � i � k, si�1
satisfies ai’s preconditions, and si is the state produced by
performing the step ai in the state si�1. Then for 1 � i � k,
ai is executable in the input state si�1, producing the output
state si. If k = n, then P is executable, and it produces the
final state sn.

A plan P 0 = (s00; A
0; D0; O0) is a constrainment of a

plan P = (s0; A;D;O) if s00 = s0, A0 = A, O � O0, and
D � D0. A completion of P is any constrainment of P
that is complete.3 P is consistent if it has at least one
completion; otherwise P is inconsistent.

3Chapman’s definition of a completion does not make it
entirely clear whether a completion of P should include only
the steps in P , or allow other steps to be added. However, other
statements in his paper make it clear that he means for a completion
to include only the steps in P , so this is how we and most others
(e.g., [9, 14]) use the term.

3 Situations, Truth, and Modality
One of the basic concepts in Chapman’s planning frame-
work is the idea of a situation. To avoid some problems
with Chapman’s definitions, we define plans using strips-
style states of the world, and then define situations in terms
of states. The intent of our definitions is that if a plan is
complete and can be executed at least far enough to reach
the situation s, then s corresponds to some state t that
arises while executing the plan; and what is true and false
in s is precisely what is true and false in t. Otherwise,
nothing is true or false in s although certain things may be
conditionally true or false (as defined below). These ideas
are formalized below.

If P is a plan, then associated with each step a of P are
two symbols in(a) and out(a), called a’s input and output
situations. Associated withP are symbols init and fin called
the initial and final situations of P . All of these symbols
must be distinct. Whenever a � b, we will also say that
x � y, where x may be a or in(a) or out(a), and y may be
b or in(b) or out(b).

We now define what is true and false in a situation of a
complete plan. Let P be a complete plan, and p be a ground
literal. Then p is true in init if p is true in P ’s initial state,
and p is true in fin if p is true in P ’s final state. If a is an
executable step of P , then p is true in in(ai) (or out(ai))
if p is true in a’s input state (or output state, respectively).
A ground literal p is false in a situation s iff :p is true
in s. Note that if P is not executable, then the law of the
excluded middle does not apply, for p will be neither true
nor false in P ’s final situation.

As a consequence of the above definitions, it follows that
p is true in s (which we write symbolically as M(p; s)) iff
the following three conditions are satisfied:

Establishment: either p codesignates with a postcondition
of some step a � s, or else p 2 s0.

Nondeletion: for all steps b between a (or s0) and s, no
postcondition of b codesignates with :p.

Executability: every step that precedes s is executable.

A closely related concept is conditional truth, which is like
ordinary truth except that it does not require executability:
p is conditionally true in s (which we write symbolically
as C(p; s)) iff the establishment and nondeletion conditions
hold.

We defined truth and conditional truth only for complete
plans, because for incomplete plans, what is true or condi-
tionally true will vary depending on which completion we
choose. In incomplete plans, we instead need to talk about
modal truth, which Chapman defines as follows [2, p. 336]:

I will say ‘‘necessarily p’’ if p is true of all completions
of an incomplete plan, and ‘‘possibly p’’ if p is true of
some completion.

Above, Chapman apparently means p to be nearly any
statement about a plan: examples in his paper include not
only statements about specific literals and situations in the
plan, but also statements about the entire plan (e.g., the
statement [2, p. 341] that a plan ‘‘necessarily solves the



problem’’). However, unless we place some restrictions on
the nature of p, this has some dubious results---for example,
if P is an incomplete plan, then all completions of P are
complete, and therefore P itself is necessarily complete.
Therefore, for the formal results in the paper, we will
use ‘‘necessarily’’ and ‘‘possibly’’ only in the following
cases (although we will sometimes use them informally in
a broader sense). If p is an atom, P is a plan, and s is a
situation in P , then:
� p is necessarily (or possibly) true in s (written2M(p; s)

and 3M(p; s), respectively) iff M(p; s) in every (or
some) completion of P ;

� p is necessarily (or possibly) conditionally true in s
(written 2C(p; s) and 3C(p; s), respectively) iff C(p; s)
in every (or some) completion of P .
We now define the following decision problems (where

P is a plan and p is a ground literal):

necessary truth: given p and P , is p necessarily true
in P ’s final situation fin?

possible truth: given p and P , is p possibly true in
P ’s final situation fin?

necessary conditional truth: given p and P , is p
necessarily conditionally true in P ’s final situation fin?

possible conditional truth: given p and P , is p
possibly conditionally true in P ’s final situation fin?

4 Duality, and Complexity of Modal Truth
Given the definitions of modal truth and modal conditional
truth above, it is easy to see that a literal p is necessarily
true in the final situation fin of a plan P if and only if (1)
p is necessarily conditionally true in fin, and (2) for every
action a of the plan and every precondition pa of a, pa is
necessarily conditionally true in the situation in(a). Thus,4

2M(p; fin)

� 2

2
4C(p; fin) ^

2
4 ^
8a2P;8pa2pre(a)

C(pa; in(a))

3
5
3
5 ; (1)

4We could consider generalizing Eq. 1 to apply to situations
s 6= fin, by replacing the condition ‘‘8a 2 P ’’ with the condition
‘‘8a 2 S,’’ where S is the set of all actions that precede s
in at least one completion of P . However, such a generalized
version of Eq. 1 would not always hold, as illustrated by the
following counterexample (due to Backstrom [1]). Let P be a
plan with three actions a; b; c; such that a � b, a � c, pre(a) = ;,
post(a) = f:pg, pre(b) = ;, post(b) = fpg, pre(c) = f:pg,
and post(c) = ;. Then 2M(p; out(b)), but it is not true that
2[C(p; out(b)) ^ [

V
fC(pd ; in(d)) : d 2 S&pd 2 pre(d)g]]. To

see this, note that P has two completions, one executable and one
non-executable. c precedes b in one completion (the executable
one) and thus c 2 S. However for c’s precondition (:p),
C(:p; in(c)) fails in the other (non-executable) completion of P .
The main reason for this is that the set of steps that precede out(b)
is different in different completions -- fa; bg in one, and fa; b; cg
in the other. Thus, the correct way of generalizing Eq. 1 will
involve doing the inner conjunction with S ranging over each of
these values, and disjoining all the resulting conjunctions.

Now, since modal necessity commutes over conjunctions
(i.e., 2(p ^ q) � 2(p)^2(q)), we can write Eq. 1 as

2M(p; fin)

�

2
42C(p; fin) ^

2
4 ^
8a2P;8pa2pre(a)

2C(pa; in(a))

3
5
3
5 : (2)

Thus computing whether p is necessarily true in fin involves
computing whether p is necessarily conditionally true in
fin, as well as computing the necessary conditional truth
of all preconditions of all steps preceding fin. As noted
in Chapman, computing the necessary conditional truth of
a literal in a situation (which involves checking whether
the MTC’s establishment and declobbering clauses are
consistent with the plan’s ordering and codesignation/non-
codesignation constraints) can be done in time polynomial
(O(n3)) in the plan length. Thus, since the total number of
preconditions in a plan is of the order of number of actions
in the plan, computing whether p is necessarily true can
also be done in polynomial time. Coming to the case of
possible truth, we have

3M(p; fin)

� 3

2
4C(p; fin) ^

2
4 ^
8a2P;8pa2pre(a)

C(pa; in(a))

3
5
3
5 : (3)

But possible truth does not commute over conjunctions (i.e.,
in general, 3(p ^ q) 6� 3(p) ^3(q)), so there is no way to
simplify Eq. 3 into component tests of computing possible
conditional truth of individual literals. Thus, even though
possible conditional truth in fin and necessary conditional
truth in fin are duals of each other (i.e., 3C(p; fin) �
:2:C(p; fin)), possible truth in fin and necessary truth in
fin are not duals of each other. More specifically:

Theorem 1 There is a ground literal p, a plan P , with the
final situation fin such that2M(p; fin) 6� :3:M(p; fin).

Thus, unlike necessary conditional truth and possible
conditional truth, necessary truth and possible truth do not
obey the modal duality that is obeyed by all classical modal
logics [3, p. 62], and thus do not define a well-formed
modal logic. It is easy to understand why this is so. The
semantics of modal logics are based on Kripke structures
(a.k.a. possible worlds). In this formulation, if p is a ground
literal, then for every possible world, p must either be true
or false in that world. For partially ordered plans, one
might expect that each completion of the plan would give
rise to a possible world. However, the modal truth of p
in a situation of a plan requires that the plan’s actions be
executable in order to produce that situation. Thus, if a
completion is not executable, then truth of p is not defined
in the corresponding possible world.5

5Although tweak plans cannot be modeled using the seman-
tics of classical modal logics, they can be modeled in a variant
of modal logics, called first order dynamic logic [13]. Dynamic



Given a ground literal p and a plan P , p is possibly true
in P ’s final situation if and only if there is an executable
completion of P that produces a final state in which p
is true, and this happens iff it is not the case that every
executable completion of P produces a final state in which
:p is true. Thus, possible truth is the dual of the
following problem:

partial truth: given a ground literal p and a plan P ,
does every executable completion of P produce a final
state in which p is true?6

Lemma 1 partial truth is NP-hard.

partial truth is a weaker condition than both nec-

essary truth and necessary conditional truth.
There are some cases (one occurs in the proof of Lemma 1)
in which every executable completion of P produces a final
state in which p is true, but p is neither necessarily true nor
necessarily conditionally true in P ’s final situation.

Another way of understanding the problem with simpli-
fying Eq. 3 is to note that if p is possibly conditionally true
and that all the preconditions of the preceding actions are
possibly conditionally true, this only implies that each of
them is individually true in at least one completion---and
this condition is necessary but insufficient for ensuring pos-
sible truth. We could check possible truth by checking to
see whether all these conditions are collectively true in at
least one completion of the plan, but since the number of
completions of a plan is exponential in the number of actions
of the plan, this would take exponential time. Furthermore,
the following theorem shows that unless P=NP, there is no
polynomial-time approach for solving this problem.

Theorem 2 possible truth is NP-hard.

Thus, necessary truth and possible truth have
different levels of complexity. If modal duality held, then
this would not be so, for each would be reducible to
the other’s complement via an equivalence of the form
3M(p; fin) � :2:M(p; fin). Thus it would follow [6,
p. 29] that either possible truth would be polyno-
mial like necessary truth, or else necessary truth

would be co-NP-hard. In Section 5.2, we discuss some
planning situations where this occurs.

5 Comparison with Other Work

5.1 The Modal Truth Criterion

Chapman states the MTC as follows [2, p. 340]:

logic, which has been used to provide semantics for programs and
plans, provides a clean way to separate executability/termination
conditions from goal satisfaction conditions. More about this in
Section 5.2.

6
partial truth corresponds closely to the notion of partial

correctness, which was studied in connection with dynamic-logic-
based modeling of computer programming languages [11, 13].

Modal Truth Criterion. A [literal] p is necessarily
true in a situation s iff two conditions hold: 7 there is a
situation t equal or necessarily previous to s in which
p is necessarily asserted; and for every step C possibly
before s and every [literal] q possibly codesignating
with p which C denies, there is a step W necessarily
between C and s which asserts r, a [literal] such that
r and p codesignate whenever p and q codesignate.
The criterion for possible truth is exactly analogous,
with all the modalities switched (read ‘‘necessary’’ for
‘‘possible’’ and vice versa).

If we take these words literally, then the definition of modal
truth tells us that the plan must be modally executable.
This is consistent with Chapman’s definition of a situation
[2], from which it follows that a step’s output situation
(and hence what is true in that situation) is only defined
if the step can be executed. However, a careful look at
Chapman’s proof of necessity and sufficiency of his MTC
reveals that his proof deals with necessary conditional truth
rather than necessary truth.8 In proving that any literal
with an establisher and no clobberer must be necessarily
true, Chapman’s proof refers to white-knight steps for every
potential clobberer, [2, p. 370], without checking that the
white knights are in fact executable.9

For the ‘‘necessary truth’’ version of the MTC, this
does not affect the validity of Chapman’s proof, since
executability occurs naturally as a consequence of applying
necessary conditionaltruth recursively to prerequisites of all
preceding steps. The same, however, cannot be guaranteed
for possible truth, since modal possibilitydoes not commute
over conjunctions---and thus Chapman’s proof cannot be
extended to possible truth. In particular, the following
theorem shows that the ‘‘possible truth’’ version of the
MTC sometimes fails:

Theorem 3 There is a plan P and a ground literal p such
that in P ’s final situation, p is not possibly true but the
MTC concludes otherwise.

The above discussion suggests an alternative interpre-
tation of the MTC that sidesteps the problem: drop the
executability requirement, and interpret the MTC as a state-
ment about modal conditional truth rather than modal truth.
This alternative interpretation is not as far-fetched as it
might sound. To see this, note that Chapman defines the
notion of truth of a literal in a situation as follows [2,
p. 338]:

A [literal] is true in a situation if it codesignates with
a [literal] that is a member of the situation. A step
asserts a [literal] in its output situation if the [literal]
codesignates with a postcondition of the step.

7The second of these conditions is the ‘‘white-knight declob-
bering clause’’ that we refer to elsewhere.

8Had Chapman explicitly noted this use of modal conditional
truth in his proof, we believe he would have noticed the non-duality
of necessary and possible truths.

9Note that in Chapman’s terminology, the establisher is a
situation, while clobberers and white knights are steps.



Here, there is no explicit requirement that the step be exe-
cutable. This suggests that the MTC does not require thatP
be modally executable, and thus suggests that Chapman was
talking about modal conditional truth. This interpretation
is also consistent with his ‘‘nondeterministic achievement
procedure’’ [2, Fig. 7], where to make a literal necessar-
ily true in a situation, he only ensures establishment and
declobbering without explicitly stating that the establisher
needs to be executable. (As explained above, for the case of
necessary truth, executability follows from making every
prerequisite of every action necessarily conditionally true.)

The ‘‘conditional truth’’ interpretation of MTC gives a
quasi-local flavor to planning, by separating the process
of ensuring local establishment and declobbering from the
process of ensuring executability, with the understanding
that if all preconditions are necessarily established and
declobbered, then the whole plan itself will be executable
and correct. In fact, some latter rewrites of the MTC (e.g.
[14, 9]) use this interpretation to eliminate the notion of
situations entirely, and state MTC solely in terms of steps
(operators) and their preconditions and postconditions.

Although a truth criterion for modal conditional truth
does have utility in plan generation, it is of limited utility in
projecting plans or partially ordered events. As mentioned
in Section 3, the latter are more naturally related to modal
truth.

5.2 Modal Duality and Universal Executability

In Section 4, we observed that the main reason why neces-
sary truth and possible truth are not duals in tweak-style
plans is that such plans can contain unexecutable comple-
tions. Thus, one way to achieve duality between necessary
truth and possible truth is to restrict our attention to plans
whose completions are always executable. One way to
guarantee that plans will always be executable is to restrict
the actions to have no preconditions, i.e., to consider only
those plans P such that pre(a) = ; for every step a of P .

This approach is clearly too restrictive, since it precludes
modeling actions with any form of preconditions. But if we
relax the restrictions of tweak-style action representation,
there is a more reasonable way to guarantee universal
executability: let an action a be executable even if its
preconditions are not satisfied. If the preconditions are
satisfied, then a will produce its postconditions; otherwise,
a will simply have no effects.10 For plans that contain only
this type of actions, possible truth and necessary truth are
duals of one another, computation of possible truth is NP-
hard, and computation of necessary truth is co-NP-hard. As
discussed below, this approach has been used in different
forms by several different researchers.

10While seemingly unintuitive, this relaxation is in fact very
much consistent with the original formalization of actions in
situational calculus [3]. In this formalism, actions are modeled
as situation-transformers, with the transformation given by the
Result function, which takes an action and a situation as the
arguments. Having universally executable steps corresponds to
having the Result be a total rather than a partial function.

To our knowledge, the above approach was first used
in Rosenchein’s work [13] on providing semantics to
plans based on first-order propositional dynamic logic.
Rosenchein restricts the use of conditionals in PDL to guar-
antee that the plan terminates irrespective of which branch
of the conditional it takes.

A very similar idea is used in Dean and Boddy’s work on
temporal projection [4]. In Dean and Boddy’s formulation,
a partially ordered set of events A is projectible even when
a rule’s preconditions don’t hold (in which case the rule
simply has no effect). Hence in their formalism,determining
possible truth and necessary truth are duals, and both are
NP-hard.

Chapman [2, p. 371] uses universally executable actions
(he calls them conditional steps) in proving his intractabil-
ity theorem for actions containing conditional effects. A
plan composed entirely of such steps will always be exe-
cutable, leading to the same results as in Dean and Boddy’s
formalism.

Since Chapman’s intractability theorem is based on plan-
ning operators that have conditional effects, it has been
natural for planning researchers to interpret it to mean that
the conditionality of these operators is what causes neces-
sary truth to be intractable. However, this interpretation is
misleading. The intractability result depends just as much
on the universal executability of Chapman’s conditional
steps as it does on their conditionality. Here’s why:

Consider an incomplete plan P composed of ordinary
‘‘unconditional’’ steps as defined in Section 2, and let a
be a step of P such that pre(a) post(a) contain an unbound
variable x. Then for the purposes of both planning and
temporal projection, a has conditional effects: its effects
will be different in different completions of P , depending
on what we bind x to. However, computing necessary truth
in such plans is still polynomial. Since Chapman’s planning
language has an infinite number of constant symbols, it
follows that in the plan P we can always find a binding
for x that makes a unexecutable. As a consequence, P
will always have at least one unexecutable completion.
Hence, determining necessary truth is trivial: nothing will
be necessarily true in P ’s final situation.

Now, suppose we restrict our planning language L to
contain only finitely many constant symbols (and thus only
finitely many ground terms, since L is function-free). Then
there will be some plans in which a is executable for every
binding of x. In this case, as the following theorem shows,
checking necessary truth will be co-NP-hard, even with
unconditional steps.

Theorem 4 If the language L contains only finitely many
constant symbols, then necessary truth is co-NP-hard.

Notice that this result is related to Chapman’s observation
[2, p. 356] that restricting the range of a variable to a finite
set will defeat the MTC, and make constraint computations
NP-complete.

Finally, a recent investigation by Nebel and Backstrom
[10] on the computational complexity of plan-validation
and temporal projection has yielded results related to those



presented in this paper. While our investigation is initially
motivated by the apparent lack of modal duality in Chap-
man’s MTC, Nebel and Backstrom’s work is motivated by
the apparent asymmetry in the complexity of plan valida-
tion through modal truth criterion, and temporal projection
(c.f. [4]). Rather than interpret MTC in terms of modal
conditional truth, and use that to explain the asymmetry
in the possible and necessary truth, as we have done in
this paper, Nebel and Backstrom choose to restrict appli-
cability of MTC only for plans whose completions are all
executable (they term this property coherence). Another
difference with their research is that they concentrate on
ground (variable-less) plans, while we look at the more
general variablized plans. We believe that the results in this
paper complement theirs and together provide a coherent
interpretation of the role of modal truth criteria in planning.

6 Concluding Remarks

In this paper, we have presented the following results about
modal truth and the modal truth criterion:

1. Contrary to Chapman’s statement, the principle of modal
duality that is obeyed by all classical modal logics is
not obeyed in tweak-style plans. The lack of duality
between necessary truthand possible truth is related to (a)
the fact that modal truth of a literal in a situation of a plan
requires that the plan’s actions be executable in order
to produce that situation, and (b) the asymmetry in the
way necessary conditional truth and possible conditional
truth commute over conjunctions:2(p^q) � 2(p)^2(q)
while3(p^q) 6� 3(p)^3(q). To achieve modal duality,
one needs universally executable plans.

2. Even though necessary truth in plans can be determined
in polynomial time as stated by Chapman, the same
statement does not hold for possible truth. Instead, the
problem of determining possible truth in plans is NP-
hard.11

3. As stated by Chapman, the MTC is correct only as a
criterion for necessary truth (not as a criterion for possible
truth). However, if we reinterpret it as a criterion for
modal conditional truth (i.e., modal truth conditional on
plan executability), then it is correct as a criterion for
both necessary conditional truth and possible conditional
truth.

Because of the wide impact of Chapman’s paper, it is
important to correct any misimpressions that may result
from it. We hope readers will find this paper useful for that
purpose. Finally, while we concentrated on clarifying the
nature of modal truth criterion, there have also been several
misimpressions regarding its role in plan generation. In the
extended version of this paper [8], we also address these
confusions.

11Checking possible truth has several applications in plan pro-
jection [4] as well as plan generalization [9].
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