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Abstract

Chapman’s paper, ‘‘Planning for Conjunctive Goals,’’ has been widely acknowledged
for its contribution toward understanding the nature of partial-order planning, and it has
been one of the bases of later work by others---but it is not free of problems. This paper
addresses some problems involving modal truth and the Modal Truth Criterion (MTC).
Our results are as follows:

(i) Even though modal duality is a fundamental property of classical modal logics, it does
not hold for modal truth in Chapman’s plans; i.e., ‘‘necessarily p’’ is not equivalent
to ‘‘not possibly :p.’’

(ii) Although the MTC for necessary truth is correct, the MTC for possible truth is
incorrect: it provides necessary but insufficient conditions for ensuring possible truth.
Furthermore, even though necessary truth can be determined in polynomial time,
possible truth is NP-hard.

(iii) If we rewrite the MTC to talk about modal conditional truth (i.e., modal truth
conditional on executability) rather than modal truth, then both the MTC for necessary
conditional truth and the MTC for possible conditional truth are correct; and both can
be computed in polynomial time.

(iv) The MTC plays a different role in plan generation than it does in checking the
correctness of plans, and this has led to several misconceptions about the MTC.
Several researchers have mistakenly attempted to simplify the MTC by eliminating
the white-knight declobbering clause from it; and others have used Chapman’s results
to conjecture that partial-order planning will not scale up to more expressive action
representations. We point out that these ideas are misconceptions, and explain why.
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1 Introduction

Chapman’s paper, ‘‘Planning for Conjunctive Goals,’’ [2] has been widely acknowl-
edged as an important step towards formalizing partial-order planning, 2 and it has
been one of the bases of later work by others (for example, [7,10,8,12,17,31,34]).
Unfortunately, however, Chapman’s work is not free of problems, and this has led
to confusion about the meaning of his results. Previous papers [7,8,16,34] have
pointed out several of these problems.

One of the fundamental concepts used by Chapman is the idea of modal truth in
plans. We will discuss the details of this concept later---but a simple version of it is
that if P is a partially ordered, partially instantiated plan and p is a ground literal,
then p is necessarily (or possibly) true in P ’s final situation if for every (or some)
totally ordered ground instance P 0 of P , p is true after executing P 0. Chapman’s
Modal Truth Criterion (MTC) purports to give necessary and sufficient conditions
for ensuring that p is necessarily or possibly true. As we describe below, this paper
addresses several problems with modal truth and the MTC.

Modal Duality and the MTC. Chapman explicitly states and proves the MTC
for necessary truth, and claims that by modal duality (i.e., the equivalence of
‘‘necessarily p’’ and ‘‘not possibly :p’’), the MTC for possible truth is obtained
via a simple rewording of the MTC for necessary truth. But in this paper, we show
that although modal duality is a fundamental property of classical modal logics, it
does not hold for modal truth in Chapman’s plans. This has several consequences:

(i) The MTC for possible truth is not completely correct: it provides necessary
but insufficient conditions for ensuring possible truth. Furthermore, although
necessary truth in plans can be computed in polynomial time as pointed out
by Chapman, 3 the same is not true for possible truth. Instead, the problem of
computing possible truth in plans is NP-hard. 4

(ii) We can define a concept called modal conditional truth, which is similar to
modal truth but does not require that a plan be executable as modal truth
does. Necessary conditional truth and possible conditional truth are duals of
each other, and both can be computed in polynomial time. Furthermore, if we
rewrite the MTC to talk about modal conditional truth rather than modal truth,

2 Partial-order planning is planning by searching in the space of partially ordered,
partially instantiated plans. We prefer not to use the more common term ‘‘nonlinear
planning,’’ because it appears to mean different things to different people.

3 There are some difficulties with Chapman’s proof of this, but these difficulties have
been cleared up by Nebel and Backstrom [25].

4 If modal duality held, then both necessary truth and possible would be at similar levels
of complexity: either both would be polynomial, or one would be NP-hard and the other
co-NP-hard. Section 3.2.2 discusses some formulations of planning in which this occurs.
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then both the MTC for necessary conditional truth and the MTC for possible
conditional truth are correct.

The Role of the MTC in Plan Generation. The MTC plays a different role in
plan generation than it does in checking the correctness of plans. In particular, the
MTC provides both necessary and sufficient conditions for necessary truth---but
it is possible to write sound and complete partial-order planners which use only
sufficient but not necessary conditions for necessary truth.

This has led to a number of misconceptions about the MTC. Several researchers
have mistakenly attempted to simplify the MTC by eliminating the white-knight
declobbering clause 5 from it. Others (including Chapman) (c.f. [2,23,35]) have
used Chapman’s results to conjecture that partial-order planning will not scale
up to more expressive action representations. In this paper, we explain why both
of these notions are incorrect---and observe that at the root of the confusion lies
the peculiar predicament of partial-order planners, which search in the space of
partially ordered partially instantiated plans, but need completeness only in the
space of totally ordered ground plans.

This paper is organized as follows. Section 2 contains basic definitions, and
clarifications and corrections of some of Chapman’s terminology. Section 3
presents results about modal duality, the complexity of modal truth, and the modal
truth criterion, and compares and contrasts these results with Chapman’s claims, as
well as with other related work. Section 4 discusses and clarifies the misconceptions
regarding the role of modal truth criterion in plan generation vs. verification of plan
correctness. Section 5 contains concluding remarks. Complicated proofs appear in
the appendix; simpler proofs are in the body of the paper.

2 Definitions

Below, we have tried to be as compatible as possible with Chapman’s ‘‘tweak-
style’’ plans, situations, and modal truth. However, at certain points, technical
problems have forced us to adopt a different approach. At those points, we explain
how our approach differs and why.

5 For the benefit of those unfamiliar with this clause, our presentation of the MTC in
Section 3.2.1 points it out explicitly.
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2.1 Basics

The planning language L is any function-free first-order language. 6 Since L is
function-free, every term is either a variable symbol or a constant symbol, and
thus every ground term is a constant symbol. We follow the usual convention of
defining an atom to be a predicate symbol followed a list of terms, a literal to be
an atom or its negation, and a proposition to be a 0-ary atom. Thus, what Chapman
calls a proposition, we call a literal.

A state is any finite collection of ground atoms of L. If a state s contains a ground
atom p, then p is true in s and :p is false in s; otherwise p is false in s and :p
is true in s. Thus, a state is simply an Herbrand interpretation for the language L,
and hence each formula of first-order logic is either satisfied or not satisfied in s

according to the usual first-order logic definition of satisfaction.

If T is a finite set of terms, then a codesignation constraint on T is a syntactic
expression of the form ‘t � u’ or ‘t 6� u’, where t; u 2 T . Let D be a set of
codesignation constraints on T , and � be a ground substitution over T (i.e., a
substitution that assigns a ground term to each variable in T ). Then � satisfies D if
t� = u� for every syntactic expression ‘t � u’ in D, and t� 6= u� for every syntactic
expression ‘t 6� u’ in D. D is consistent if there is at least one ground substitution
� that satisfies D. If t� = u� for every � that satisfies D, then t codesignates with
u. 7

A step is a triple a = (name(a); pre(a); post(a)), where name(a) is a constant
symbol called a’s name, and pre(a) and post(a) are collections of literals called
a’s preconditions and postconditions. 8 If A is a set of steps, then an ordering
constraint on A is a syntactic expression of the form ‘a � b’ (read as ‘‘a precedes
b’’), where a; b 2 A. If O is a set of ordering constraints on A and � is a total
ordering on A, then � satisfies O if for every syntactic expression ‘a � b’ in O,
a � b.

A partially ordered, partially instantiated plan (or more succinctly, a plan) is

6 Conventional first-order languages contain only finitely many constant symbols, but
Chapman requires his planning language to contain an infinite number of constant symbols.
For compatibility with Chapman’s work, we will assume that L contains infinitely many
constant symbols---but in Section 3.2.2 we will discuss what happens if the number of
constant symbols is finite.

7 If D is consistent, then this is equivalent to saying that t codesignates with u iff ‘t � u’
is in D’s transitive closure.

8 Informally, we will use the terms a and name(a) interchangeably. Chapman’s definition
of a step actually omits name(a) completely---but as pointed out by McAllester and
Rosenblitt [22], unless we give unique names to steps, it is impossible for a plan to contain
two distinct steps that have the same preconditions and postconditions.
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a 4-tuple P = (s0; A;D;O), where s0 is a state called P ’s initial state, A is a
set of steps, D is a set of codesignation constraints on the terms of P (i.e., the
terms in s0 and A), and O is a set of ordering constraints on the steps of A. P is
complete if it is totally ordered and ground, i.e., if there is a unique total ordering
a1 � a2 � : : : � an over A that satisfies O, and a unique ground substitution �

over the terms of P that satisfies D. If P is not complete, then it is incomplete. If
P is complete, we will often write P informally as a1 � a2 � : : : � an.

Suppose that P is a complete plan, and let k be the largest integer � n for which
there are states s1; s2; : : : ; sk such that the following properties are satisfied for
1 � i � k:

(i) si�1 satisfies ai’s preconditions; i.e., p� is true in si�1 for every literal
p 2 pre(ai).

(ii) si is the state produced by performing the step ai in the state si�1; i.e.,
si = (si�1 � fi) [ ti, where ti is the set of all ground atoms p� such that
p 2 post(ai), and fi is the set of all negated ground atoms p� such that
p 2 post(ai).

Then for 1 � i � k, ai is executable in the input state si�1, producing the output
state si. If k = n, then P is executable, and it produces the final state sn.

A plan P 0 = (s00; A
0;D0; O0) is a constrainment of a plan P = (s0; A;D;O) if

s00 = s0, A0 = A, O � O0, and D � D0. A completion of P is any constrainment of
P that is complete. 9 P is consistent if it has at least one completion; otherwise P
is inconsistent.

2.2 Situations, Truth, and Modality

Chapman defines a situation to be a collection of literals. 10 Given a literal p and a
situation s, he defines p to be true if it codesignates with a literal in s, and false if it
codesignates with the negation of a literal in s. Chapman also makes the following
definitions [2, p. 338]:

A plan has an initial situation, which is a set of [literals] describing the world
at the time that the plan is to be executed, and a final situation, which describes
the state of the world after the whole plan has been executed. Associated with

9 Chapman’s definition of a completion does not make it entirely clear whether a
completion of P should include only the steps in P , or allow other steps to be added.
However, other statements in his paper make it clear that he means for a completion to
include only the steps in P , so this is how we and most others (e.g., [17,34]) use the term.
10 He calls them propositions---but as mentioned at the beginning of Section 2.1, we call
them literals instead.
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each step in a plan its input situation, which is the set of [literals] that are true in
the world just before it is executed, and its output situation, which is the set of
[literals] that are true in the world just after it is executed. In a complete plan,
the input situation of each step is the same as the output situation of the previous
step. The final situation of a complete plan has the same set of [literals] in it as
the output situation of the last step. : : : A [literal] is denied in a situation if its
negation is asserted there. It is illegal for a [literal] to be both denied and asserted
in a situation.

This approach leads to several difficulties:

(i) As pointed out by Yang and Tenenberg [34], if a plan P is not complete,
then its situations are ill-defined. For example, suppose P consists of two
unordered steps a and b, such that a asserts p and denies q, and b asserts q and
denies p. Then P ’s final situation is either fpg or fqg, depending on which
completion of P we choose.

(ii) If a situation contains literals that are not completely ground, then what those
literals mean is problematic. For example, suppose a plan’s initial situation
contains the literal p(x), where x is a variable symbol. This cannot mean
(8x)p(x), because Chapman’s tweak planner may later constrain x 6� y for
some constant or variable y. It cannot mean (9x)p(x), because tweak may
later constrain x � y. Apparently, it means p(x) for some undetermined x, and
tweak gets to choose what x is. In other words, if the initial situation contains
any variables, then tweak changes the meaning of the initial situation as it
goes along.

Thus, rather than using Chapman’s approach, we define plans using strips-style
states of the world, and then define situations in terms of states. The intent of our
definitions is that if a plan is complete and can be executed at least far enough to
reach the situation s, then s corresponds to some state t that arises while executing
the plan; and what is true and false in s is precisely what is true and false in t. 11

Otherwise, nothing is true or false in s although certain things may be conditionally
true or false (as defined below). These ideas are formalized below.

If P is a plan, then associated with each step a of P are two symbols in(a) and
out(a), called a’s input and output situations. Associated with P are symbols init
and fin called the initial and final situations of P . All of these symbols must be
distinct. Whenever a � b, we will also say that x � y, where x may be a or in(a)
or out(a), and y may be b or in(b) or out(b). 12

11 From our definition of a state earlier, the truth value of every literal p is known in the
state t, and hence in the situation s. This differs from Chapman’s formulation of a situation,
in which the truth value of p is unknown in s unless s explicitly contains something
codesignating with p or :p.
12 According to this definition, out(a) and in(b) are always distinct; hence we would say
out(a) � in(b) in some cases where Chapman would say out(a) = in(b). However, this
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We now define what is true and false in a situation of a complete plan. Let P be
a complete plan, and p be a ground literal. Then p is true in init if p is true in P ’s
initial state, and p is true in fin if p is true in P ’s final state. If a is an executable
step of P , then p is true in in(ai) (or out(ai)) if p is true in a’s input state (or output
state, respectively). A ground literal p is false in a situation s iff :p is true in s. Note
that if P is not executable, then the law of the excluded middle does not apply, for
p will be neither true nor false in P ’s final situation.

As a consequence of the above definitions, it follows that p is true in s (which we
write as M(p; s)) iff the following three conditions are satisfied:

Establishment: either p codesignates with a postcondition of some step a such
that a � s, or else p 2 s0.

Nondeletion: for all steps b between a (or s0) and s, no postcondition of b

codesignates with :p. 13

Executability: every step that precedes s is executable.

A closely related concept is conditional truth, which is like ordinary truth except
that it does not require executability: p is conditionally true in s (which we write
symbolically as C(p; s)) iff the establishment and nondeletion conditions hold.

We defined truth and conditional truth only for complete plans, because for
incomplete plans, what is true or conditionally true will vary depending on which
completion we choose. In incomplete plans, we instead need to talk about modal
truth, which Chapman defines as follows [2, p. 336]:

I will say ‘‘necessarily p’’ if p is true of all completions of an incomplete plan,
and ‘‘possibly p’’ if p is true of some completion.

Above, Chapman apparently means p to be nearly any statement about a plan:
examples in his paper include not only statements about specific literals and
situations in the plan, but also statements about the entire plan (e.g., the statement
[2, p. 341] that a plan ‘‘necessarily solves the problem’’). However, unless we place
some restrictions on the nature of p, this has some dubious results---for example, if
P is an incomplete plan, then all completions of P are complete, and therefore P
itself is necessarily complete. Therefore, for the formal results in the paper, we will
use ‘‘necessarily’’ and ‘‘possibly’’ only in the following cases (although we will
sometimes use them informally in a broader sense). If p is an atom, P is a plan, and
s is a situation in P , then:

-- p is necessarily (or possibly) true in s (written 2M(p; s) and 3M(p; s),
respectively) iffM(p; s) in every (or some) completion of P ;

makes no significant difference in any of the results.
13 This is basically the white-knight declobbering clause of the MTC (see Section 3.2.1),
simplified to handle the special case where the plan is complete.

6



Table 1
Relationships among truth, modal truth and modal conditional truth of a literal p in the
final situation of a plan P .

Complete plans Incomplete plans

Truth M(p; fin): P is executable, and
produces p in fin. This requires that the es-
tablishment, non-deletion and executabil-
ity conditions hold.

Nec. Truth 2M(p; fin): every comple-
tion of P is executable, and produces p
in fin.

Poss. Truth 3M(p; fin): some comple-
tion of P is executable, and produces p
in fin.

Conditional Truth C(p; fin): if P ’s steps
did not have preconditions, then P would
have produced p in fin. This requires
the establishment and non-deletion condi-
tions, but not the executability condition.

Nec. Cond. Truth2C(p; fin): ifP ’s steps
did not have preconditions, then every
completion of P would have produced p
in fin.

Poss. Cond. Truth 3C(p; fin): if P ’s
steps did not have preconditions, then
some completion of P would have pro-
duced p in fin.

-- p is necessarily (or possibly) conditionally true in s (written 2C(p; s) and
3C(p; s), respectively) iff C(p; s) in every (or some) completion of P .

Table 1 summarizes the relationships among truth, modal truth and modal condi-
tional truth.

We now define the following decision problems:

necessary truth: given a ground literal p and a plan P , is p necessarily true
in P ’s final situation fin? Or equivalently, does every completion of P produce
a final state in which p is true?
possible truth: given a ground literal p and a plan P , is p possibly true in P ’s
final situation fin? Or equivalently, is there a completion of P that produces a
final state in which p is true?
necessary conditional truth: given a ground literal p and a plan P , is p
necessarily conditionally true in P ’s final situation fin?
possible conditional truth: given a ground literal p and a plan P , is p

possibly conditionally true in P ’s final situation fin?
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3 Modal Duality and the Complexity of Modal Truth

3.1 Our Results

From the definitions of truth and conditional truth in the previous section, it is easy
to see that in each completion of a plan P , a literal p is true in the final situation
fin if and only if (1) p is conditionally true in fin, and (2) the completion itself is
executable. The completion is executable if and only if for every action a and every
precondition pa of a, pa is conditionally true in the situation in(a). Thus,

M(p; fin) �

2
666664
C(p; fin) ^

2
4 ^
8a2P;8pa2pre(a)

C(pa; in(a))

3
5

| {z }
Executability of the completion

3
777775
; (1)

Since ensuring that p is necessarily true in P ’s final situation is equivalent to
ensuring that p is true in the final situation of every completion of P , we have:

2M(p; fin) � 2

2
4C(p; fin) ^

2
4 ^
8a2P;8pa2pre(a)

C(pa; in(a))

3
5
3
5 : (2)

Now, since modal necessity distributes over conjunctions (i.e., 2(p ^ q) � 2(p) ^
2(q)), we can rewrite Eq. 2 as

2M(p; fin) �

2
666664
2C(p; fin) ^

2
4 ^
8a2P;8pa2pre(a)

2C(pa; in(a))

3
5

| {z }
Executability of all completions

3
777775
: (3)

Thus we can determine whether p is necessarily true by checking to see whether it
is necessarily conditionally true, and whether the preconditions of each step of the
plan are necessarily conditionally true. This can be done in polynomial time using
the same technique Chapman suggests for computing the MTC in [2]. In particular,
computing the necessary conditional truth of a literal in a situation (which involves
checking whether the MTC’s establishment and declobbering clauses are consistent
with the plan’s ordering and codesignation/non-codesignation constraints) can be
done in time polynomial (O(n3)) in the plan length. Thus, since the total number of
preconditions in a plan is of the order of number of actions in the plan, computing
whether p is necessarily true can also be done in polynomial time.
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step a2:
move-from-table(B;C)

step a1:
move-from-table(A;B)

A B C

init fin

pre: Clear(A);Clear(B);On(A;Table)

pre: Clear(B);Clear(C);On(B;Table)

post: On(B;C);Clear(B);:Clear(C);:On(B;Table)

post: On(A;B);Clear(A);:Clear(B);:On(A;Table)

Fig. 1. A blocks-world plan illustrating the non-duality of necessary truth and possible
truth in tweak-style plans. As shown in the drawing, the following atoms are true in
the initial situation: On(A;Table), On(B;Table), On(C;Table), Clear(A), Clear(B),
Clear(C). The operator move-from-table(x; y) moves block x from the table to block y.
The preconditions and postconditions of each step are shown above and below the box that
represents the step.

Coming to the case of possible truth, by similar arguments we get:

3M(p; fin) � 3

2
4C(p; fin) ^

2
4 ^
8a2P;8pa2pre(a)

C(pa; in(a))

3
5
3
5 : (4)

But possible truth does not distribute over conjunctions (i.e., in general,3(p^ q) 6�
3(p) ^ 3(q)), so there is no way to simplify Eq. 4 into component tests of
computing possible conditional truth of individual literals. Thus, even though
possible conditional truth in fin and necessary conditional truth in fin are duals of
each other (i.e., 3C(p; fin) � :2:C(p; fin)), possible truth in fin and necessary
truth in fin are not duals of each other. More specifically:

Theorem 1 There exist a ground literal p and a plan P such that in P ’s final
situation fin, 2M(p; fin) 6� :3:M(p; fin).

Proof. Consider the blocks-world plan shown in Fig. 1. This plan has only one
executable completion, namely a2 � a1. This completion produces a final state
in which A is on B and B is on C. Thus, no executable completion produces a
final state where :On(A;B) is true, so :On(A;B) is not possibly true in the final
situation fin. If possible truth and necessary truth were duals, then this would mean
that On(A;B) is necessarily true in fin. However, On(A;B) is not necessarily true
in fin, because the plan contains an unexecutable completion, namely a1 � a2.
Thus possible truth and necessary truth are not duals. 2
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Thus, unlike necessary conditional truth and possible conditional truth, necessary
truth and possible truth do not obey the modal duality that is obeyed by all classical
modal logics [4, p. 62], and thus do not define a well-formed modal logic. It is easy
to understand why this is so. The semantics of modal logics are based on Kripke
structures (a.k.a. possible worlds). In this formulation, if p is a ground literal, then
for every possible world, p must either be true or false in that world. For partially
ordered plans, one might expect that each completion of the plan would give rise
to a possible world. However, the modal truth of p in a situation of a plan requires
that the plan’s actions be executable in order to produce that situation. Thus, if a
completion is not executable, then the truth of p is not defined in the corresponding
possible world. 14

Given a ground literal p and a plan P , p is possibly true in P ’s final situation if and
only if there is an executable completion of P that produces a final state in which
p is true, and this happens iff it is not the case that every executable completion of
P produces a final state in which :p is true. Thus, possible truth is the dual of
the following problem:

partial truth: given a ground literal p and a plan P , does every executable
completion of P produce a final state in which p is true? 15

Lemma 1 of the appendix shows that partial truth is NP-hard.

partial truth is a weaker condition than both necessary truth and nec-

essary conditional truth. 16 The example in Fig. 2 illustrates this. There
are some cases in which every executable completion of P produces a final state in
which p is true, but p is neither necessarily true nor necessarily conditionally true
in P ’s final situation.

Another way of understanding the problem with simplifying Eq. 4 is to note that if p
is possibly conditionally true and that all the preconditions of the preceding actions
are possibly conditionally true, this only implies that each of them is individually

14 Although tweak plans cannot be modeled using the semantics of classical modal
logics, they can be modeled in a variant of modal logics, called first order dynamic logic
[32]. Dynamic logic, which has been used to provide semantics for programs and plans,
provides a clean way to separate executability/termination conditions from goal satisfaction
conditions. More about this in Section 3.2.2.
15
partial truth corresponds closely to the notion of partial correctness, which was

studied in connection with dynamic-logic-based modeling of computer programming
languages [28,32].
16 It may seem at first glance that partial truth rather than necessary truth should form the
basis of planning, since we are only interested in the executable completions of the plan.
However, if a planner returned a plan whose conditions were all partially true rather than
necessarily true, this would require the user of the plan to spend time trying to figure out
which of the possibly exponential number of completions is actually executable.
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step a1:
move-from-table(A;B)

A B

init fin

pre: Clear(A);Clear(B);On(A;Table)

post: On(A;B);Clear(A);:Clear(B);:On(A;Table)

step a2:
move-to-table(A;B)

post: On(A;Table);Clear(B);:On(A;B)

pre: Clear(A);On(A;B)

Property Atoms with that property

Necessarily true none
(produced by all completions)
Necessarily conditionally true
(produced by all completions, Clear(A), On(B;Table)
if preconditions are stripped off)

Partially true (produced Clear(A), On(A;Table);
by all executable completions) Clear(B), On(B;Table)

Fig. 2. Example showing that partial truth is weaker than both necessary truth and necessary
conditional truth. The table shows which atoms satisfy various truth conditions in fin.

true in at least one completion---and this condition is necessary but insufficient for
ensuring possible truth. We could check possible truth by checking to see whether
all these conditions are collectively true in at least one completion of the plan, but
since the number of completions of a plan is exponential in the number of actions
of the plan, this would take exponential time. Furthermore, the following theorem
(proved in the appendix) shows that unless P=NP, there is no polynomial-time
approach for solving this problem.

Theorem 2 possible truth is NP-hard.

Thus, necessary truth and possible truth have different levels of complex-
ity. If modal duality held, then this would not be so, for each would be reducible to
the other’s complement via an equivalence of the form3M(p; s) � :2:M(p; s).
Thus it would follow [9, p. 29] that either possible truth would be polynomial
like necessary truth, or else necessary truth would be co-NP-hard. In
Section 3.2.2, we discuss some planning situations where this occurs.
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3.2 Comparison with Other Work

3.2.1 The Modal Truth Criterion

Chapman states the MTC as follows [2, p. 340]:

Modal Truth Criterion. A [literal] p is necessarily true in a situation s iff
two conditions hold: 17 there is a situation t equal or necessarily previous to
s in which p is necessarily asserted; and for every step C possibly before s

and every [literal] q possibly codesignating with p which C denies, there is a
step W necessarily between C and s which asserts r, a [literal] such that r and
p codesignate whenever p and q codesignate. The criterion for possible truth
is exactly analogous, with all the modalities switched (read ‘‘necessary’’ for
‘‘possible’’ and vice versa).

If we take these words literally, then the definition of modal truth tells us that the
plan must be modally executable. This is consistent with Chapman’s definition
of a situation (quoted in Section 2.2), from which it follows that a step’s output
situation (and hence what is true in that situation) is only defined if the step can be
executed. However, a careful look at Chapman’s proof of necessity and sufficiency
of his MTC reveals that his proof deals with necessary conditional truth rather than
necessary truth. 18 In proving that any literal with an establisher and no clobberer
must be necessarily true, Chapman’s proof refers to white-knight steps for every
potential clobberer, [2, p. 370], without checking that the white knights are in fact
executable. 19

For the ‘‘necessary truth’’ version of the MTC, this does not affect the validity
of Chapman’s proof, since executability occurs naturally as a consequence of
applying necessary conditional truth recursively to prerequisites of all preceding
steps. The same, however, cannot be guaranteed for possible truth, since modal
possibility does not commute over conjunctions---and thus Chapman’s proof cannot
be extended to possible truth. In particular, the following theorem shows that the
‘‘possible truth’’ version of the MTC sometimes fails:

Theorem 3 There is a planP and a ground literal p such that inP ’s final situation,
p is not possibly true but the MTC concludes otherwise.

17 The second of these conditions is the ‘‘white-knight declobbering clause’’ that we
refer to elsewhere. The steps C and W are often called a clobberer and a white knight,
respectively. The situation t can be either the initial situation or the output situation of
some step e, and in the latter case e is often called an establisher.
18 Had Chapman explicitly noted this use of modal conditional truth in his proof, we
believe he would have noticed the non-duality of necessary and possible truths.
19 Note that in Chapman’s terminology, the establisher is a situation, while clobberers and
white knights are steps.
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Proof. In the blocks-world plan in Fig. 2, consider the condition On(A;B), which
holds in out(a1). a2 deletes On(A;B), but a1 adds On(A;B), and a1 can possibly
come after a2. Thus, the MTC would conclude that On(A;B) is possibly true in fin.
In this case the MTC is incorrect, since there is no executable completion of the
plan for which On(A;B) is true in the final state. 20

2

The MTC and modal conditional truth. The above discussion suggests an alter-
native interpretation of the MTC that sidesteps the problem: drop the executability
requirement, and interpret the MTC as a statement about modal conditional truth
rather than modal truth. This alternative interpretation is not as far-fetched as it
might sound. To see this, note that Chapman defines the notion of truth of a literal
in a situation as follows [2, p. 338]:

A [literal] is true in a situation if it codesignates with a [literal] that is a member
of the situation. A step asserts a [literal] in its output situation if the [literal]
codesignates with a postcondition of the step.

Here, there is no explicit requirement that the step be executable. This suggests
that the MTC does not require that P be modally executable, and thus suggests
that Chapman was talking about modal conditional truth. This interpretation is also
consistent with his ‘‘nondeterministic achievement procedure’’ [2, Fig. 7], where
to make a literal necessarily true in a situation, he only ensures establishment and
declobbering without explicitly stating that the establisher needs to be executable.
(As explained above, for the case of necessary truth, executability follows from
making every prerequisite of every action necessarily conditionally true.)

The ‘‘conditional truth’’ interpretation of the MTC gives a quasi-local flavor to
planning, by separating the process of ensuring local establishment and declobbering
from the process of ensuring executability, with the understanding that if all
preconditions are necessarily established and declobbered, then the whole plan
itself will be executable and correct. In fact, some latter rewrites of the MTC (e.g.
[34,17]) use this interpretation to eliminate the notion of situations entirely, and
state the MTC solely in terms of steps (operators) and their preconditions and
postconditions.

Although a truth criterion for modal conditional truth does have utility in plan
generation, it is of limited utility in projecting plans or partially ordered events. As
mentioned in Section 2.2, the latter are more naturally related to modal truth.

20 Note, however, that On(A;B) is possibly conditionally true in fin, because if the steps
had no preconditions, then one of the completions would have produced On(A;B).
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3.2.2 Modal Duality and Universal Executability

In Section 3.1, we observed that the main reason why necessary truth and possible
truth are not duals in tweak-style plans is that such plans can contain unexecutable
completions. Thus, one way to achieve duality between necessary truth and possible
truth is to restrict our attention to plans whose completions are always executable.
One way to guarantee that plans will always be executable is to restrict the actions
to have no preconditions, i.e., to consider only those plans P such that pre(a) = ;
for every step a of P . In this case, it is easy to see that Equations 2 and 4 in
Section 3.1 will simplify respectively to:

2M(p; s)�2C(p; s); (5)
3M(p; s)�3C(p; s): (6)

In other words, for the set of plans composed entirely of precondition-less steps,
modal truth and modal conditional truth are identical, necessary truth and possible
truth are duals, and all are computable in polynomial time.

The above approach to achieving universal executability is clearly too restrictive,
since it precludes modeling actions with any form of preconditions. But if we relax
the restrictions of tweak-style action representation, there is a more reasonable
way to guarantee universal executability: let an action a be executable even if
its preconditions are not satisfied. If the preconditions are satisfied, then a will
produce its postconditions; otherwise, a will simply have no effects. For plans that
contain only this type of action, possible truth and necessary truth are duals of one
another, computation of possible truth is NP-hard, and computation of necessary
truth is co-NP-hard. Fig. 3 summarizes the complexity relations among the various
decision problems. As discussed below, this approach has been used in different
forms by several different researchers.

Propositional Dynamic Logic. To our knowledge, the above approach was first
used in Rosenchein’s work [32] on providing semantics to plans based on first-order
propositional dynamic logic. Propositional Dynamic Logic (PDL) is a variant of
modal logic, which was originally designed to provide semantics to computer
programs [28]. In PDL, the semantics of a program are described in terms of
what will be necessarily and possibly true after the execution of that program. A
program is said to be totally correct if (a) it halts, and (b) whenever it halts, certain
goal propositions will be true in the resulting world. Programs that only satisfy
condition b are said to be partially correct. (Note the similarity between partial
correctness and partial truth). In using PDL to provide semantics to plans,
Rosenchein guarantees universal executability of plans by starting with a loop-free
subset of PDL, and restricting it further to allow only the so-called C-programs.
C-programs restrict the use of conditionals in PDL to guarantee that the plan
terminates irrespective of which branch of the conditional it takes.
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universally executable actions.

15



Temporal Projection. A very similar idea is used in Dean and Boddy’s work
on temporal projection [5]. Specifically, they use actions that have ground precon-
ditions and effects. The effects of the actions are defined in terms of projection
rules, which are of the form he; �; �; �i, where e is an event with which the rule is
associated, and � is a set of antecedent conditions, which if true before e, will cause
the � conditions to be added and the � conditions to be deleted. Dean and Boddy
are concerned with the following decision problem: given a partially ordered set
of events A, does a condition C belong to Possible(e), where the latter is the set
of conditions that hold immediately following the event e in some totally ordered
ground instance (i.e., completion) of A.

In Dean and Boddy’s formulation,A is executable even when a rule’s preconditions
don’t hold (in which case the rule simply has no effect). Thus as discussed earlier,
possible truth is equivalent to possible conditional truth, necessary truth is equivalent
to necessary conditional truth, and possible truth and necessary truth are duals.
Hence they are able to prove that in their formalism, determining possible truth is
NP-hard and determining necessary truth is co-NP-hard.

Conditional Steps. Chapman uses universally executable actions (he calls them
conditional steps) in proving his intractability theorem for actions containing
conditional effects. Specifically, Chapman defines a conditional step as follows [2,
p. 371]:

A conditional step is always applicable, but has two sets of postconditions, the
if-true and the if-false postconditions. The if-true postconditions hold in the
output situation if all the preconditions were satisfied in the input situation;
otherwise the if-false postconditions hold.

Since these conditional steps are always applicable, a plan composed entirely of
such steps will always be executable. Thus, just as in Dean and Boddy’s formalism,
determining necessary truth is co-NP-hard, as shown by Chapman in the proof of
his Intractability Theorem.

Since the Intractability Theorem is based on planning operators that have conditional
effects, it has been natural for planning researchers to interpret it to mean that the
conditionality of these operators is what causes necessary truth to be intractable.
However, this interpretation is misleading. The intractability result depends just as
much on the universal executability of Chapman’s conditional steps as it does on
their conditionality. Below we explain why.

Consider an incomplete plan P composed of ordinary ‘‘unconditional’’ steps as
defined in Section 2, and let a be a step of P such that pre(a) and post(a) contain
an unconstrained variable x. Then for the purposes of both planning and temporal
projection, the effects of a are to some extent conditional. In particular, depending
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on what value we give to x, a will have different effects in different completions
of P . However, computing necessary truth in such plans is still polynomial. Since
Chapman’s planning language has an infinite number of constant symbols, it follows
that in the plan P we can always find a binding for x that makes a unexecutable. As
a consequence, P will always have at least one unexecutable completion. Hence,
determining necessary truth is trivial: nothing will be necessarily true in P ’s final
situation.

Now, suppose we restrict our planning language L to contain only finitely many
constant symbols (and thus only finitely many ground terms, since L is function-
free). Then there will be some plans in which a is executable for every binding of
x. In this case, as the following theorem shows, checking necessary truth will be
co-NP-hard, even with unconditional steps.

Theorem 4 If the language L contains only finitely many constant symbols, then
necessary truth is co-NP-hard.

Notice that this result is related to Chapman’s observation [2, p. 356] that restricting
the range of a variable to a finite set will defeat the MTC, and make constraint
computations NP-complete.

Coherent Plans. Nebel and Backstrom [25] have recently studied the com-
putational complexity of plan validation and temporal projection. While our
investigation was initially motivated by the apparent lack of modal duality in Chap-
man’s MTC, Nebel and Backstrom’s work is motivated by the apparent asymmetry
between the complexity of plan validation as studied by Chapman, and temporal
projection as studied by Dean and Boddy [5].

Although Nebel and Backstrom’s results are related to ours, there are several
significant differences. Rather than interpret the MTC in terms of modal conditional
truth and use that to explain the asymmetry in the possible and necessary truth, as
we have done in this paper, Nebel and Backstrom instead chose to restrict the MTC
to apply only to plans whose completions are all executable (they call this property
coherence). Furthermore, they restricted their plans to be ground (i.e., to contain
no variables), and our plans do not have this restriction. We believe that the results
in this paper complement theirs and together provide a coherent interpretation of
the role of modal truth criteria in planning.

4 The Role of the MTC in Partial-Order Planning

Chapman’s original motivation for the formulation of the MTC was to provide a
formal basis for partial-order planning. Intuitively, since the MTC accounts for all
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the scenarios in which a proposition p is necessarily true in a situation, we can
make p necessarily true by simply adding constraints to the plan to make one of
those scenarios true. While this use of the MTC provides a sufficient formal basis
for partial-order planning, it turns out not to be necessary. More specifically, sound
and complete partial-order planners:

-- do not need to reason about the correctness of arbitrary partially ordered plans.
-- do not need to consider only those goals that are not necessarily true for

achievement.
-- do not need to base their goal achievement procedure on a necessary and

sufficient truth criterion for partially ordered plans.

These seemingly counter-intuitive facts are a result of the somewhat peculiar
predicament of partial-order planners: they search in a space of plans that are
partially ordered and partially instantiated, to find a totally ordered ground plan
that solves the problem. This has lead to several confusions about the role of the
MTC in planning. In this section, we will clarify the role played by the MTC in
partial-order planning, and then address some misconceptions that resulted from
misunderstandings in this regard.

4.1 Unnecessity of the MTC for Partial-Order Planning

Many planning algorithms can be thought of as repeated iterations of the following
steps: take a plan, evaluate it to see if it is a solution, and if it is not, then refine
it further using a goal achievement procedure. For example, Chapman describes
tweak, a planner based on his MTC, as follows[2]:

‘‘[The planner] enters a loop in which some goal not yet achieved is chosen and
the [goal achievement] procedure is applied’’ (p. 344; emphasis ours)

‘‘The goal achievement procedure is derived by interpreting the necessary
truth criterion as a nondeterministic procedure. The criterion tells us all the ways
a proposition could be necessarily true; the procedure chooses one of them and
modifies the plan accordingly.’’ (p. 341)

In the above, the MTC plays three separate roles: as a termination criterion (the
planning stops when all the goals are necessarily correct), as a goal selection criterion
(only conditions that are not necessarily true are selected for goal achievement),
and as the basis for the nondeterministic goal achievement procedure.

Although the MTC is sufficient for serving these roles, it is not required for either
of them---it is possible to provide a formal basis for partial-order planning without
recourse to the MTC (c.f. [27]). To see this, we must start with a clear understanding
of the objectives of partial-order planning. For both partial-order and total-order
planning, the objective is to find a ground operator sequence which when executed
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in the initial state produces a desired goal state. In the case of partial-order planning,
the search is conducted in the space of partially ordered plans for efficiency of plan
generation, and each partially ordered plan is simply a shorthand representation
for the set of all ground operator sequences that are consistent with the plan’s
constraints. 21 This means that one can do partial-order planning without having to
reason about the ‘‘correctness’’ of partially ordered plans. Let us now re-examine
how crucial the MTC is for termination, goal-selection and goal achievement
procedures of a partial-order planner.

4.1.1 Termination

Since the objective of partial-order planning is to find plans that are ground and
totally ordered, it follows that for sound and complete partial-order planning, it is
sufficient for the termination condition to be capable of checking the correctness of
totally ordered ground plans. Rather than using Chapman’s MTC for this purpose,
a termination condition such as the one given below can be used instead:

Eager Termination: Randomly generate a completion (ground linearization) of
the current plan. If the completion solves the problem the planner is trying to
solve, then terminate the planner and return the completion.

The eager termination criterion is always tractable, since a completion can be
enumerated in polynomial time, and can be checked for correctness in polynomial
time. Furthermore, a planner using this termination criterion will terminate on
any incomplete plan on which a planner using MTC terminates. This is because
whenever a plan satisfies the MTC, all of its completions (including the randomly
generated one) are guaranteed to solve the problem the planner is trying to solve.
Finally, the eager termination criterion may allow the planner to terminate earlier
than the MTC would, because the MTC is not satisfied unless all completions of
the current plan solve the problem.

4.1.2 Goal Selection

Since the order in which goals are selected does not affect the completeness
of partial-order planning [22,18], MTC-based goal selection is just one of many
possible goal selection strategies. Goal selection based on the MTC essentially boils
down to preferring to work on preconditions of the plan that are not necessarily
true, with the rationale that such a strategy may allow the planner to exploit any
serendipitously satisfied goals by terminating without having to explicitly work
on achieving them. 22 Replacing this strategy or complementing it with other

21 See [18,19] for an elaboration of this view.
22 The occurrence of such a serendipitously satisfied goal has been referred to in [11] as
an enabling-condition interaction.
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goal selection strategies does not affect the soundness and completeness of the
underlying planner.

4.1.3 Goal Achievement

The last and perhaps most important role of the MTC in plan generation in
tweak is as the basis for the goal achievement procedure. Although Chapman’s
interpretation of the MTC as a nondeterministic program provides a sufficient basis
for goal achievement, it is once again not necessary. In fact, many partial-order
planners, such as McAllester’s SNLP [22,15,24], use a goal achievement procedure
that corresponds to a modified MTC in which the white-knight declobbering clause
is replaced with a much simpler demotion clause:

A literal p is necessarily true in a situation s if p is necessarily asserted in a
situation s0 which necessarily precedes s, and p is necessarily not deleted by any
step a that possibly comes between s0 and s.

With this modification, the truth criterion is sufficient but unnecessary for ensuring
the truth of a literal (see Section 4.2 for an example and related discussion). A
planner using this modified truth criterion can still be complete, because for the
special case of totally ordered plans, this criterion is equivalent to the MTC, and
provides sufficient as well as necessary conditions for determining whether the
plan solves the problem. To put it another way, for every plan P that is correct
according to Chapman’s MTC, there will be a constrainment P 0 of P that will
be correct according to this modified truth criterion such that whenever tweak
terminates with P , the planner using the modified truth criterion will terminate
with the constrainment P 0.

4.2 The Role of White-Knight Declobbering

4.2.1 White-Knight Declobbering in Checking Plan Correctness

Starting with the fact that one does not need the full power of Chapman’s MTC
in order to do sound and complete partial-order planning, some researchers have
attempted to simplify the MTC by eliminating the white-knight clause from it.
Unfortunately, such a simplification is erroneous. As Chapman’s proof shows,
something similar to the white-knight clause is still required if we want to state
the necessary and sufficient conditions for the necessary truth of a literal in a
given partially ordered plan (or equivalently, recognize the correctness of a given
partially ordered plan) in polynomial time.

If we don’t care about polynomial time, then we can simply enumerate all the
completions of the plan, and verify that each completion is a correct totally
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ordered ground plan for solving the problem. But since the number of completions
of a partially ordered plan is exponential in the size of the plan, this is very
inefficient unless the plan is already totally ordered---in which case one can use a
‘‘nondeletion’’ condition similar to that we discussed in Section 2.2.

Although the necessity of the white-knight declobbering clause does depend on
whether or not the plan is totally ordered, it does not depend on whether or not the
plan is ground. (Chapman’s use of a partially instantiated plan [2, Fig. 5, p. 339]
to motivate white-knight declobbering seems to have caused this misimpression.)
The following example, due to Mark Drummond [6], illustrates this point. Consider
the ground partially ordered plan in Fig. 4, in which the literal p is required in the
final situation fin, the steps b1 and b2 add p, the steps a1 and a2 delete p, and the
steps a1 and b1 are unordered with respect to a2 and b2. We can see that p is true in
the situation preceding fin in every completion of this plan. However, without the
white-knight clause, the modal truth criterion would not be able to recognize this
fact. 23

Since the MTC can be used to determine efficiently (in polynomial time) whether
all the completions of an arbitrary partially ordered plan are correct, it can also
be used as a basis for removing any unnecessary orderings in a given plan in
polynomial time [16,1]: repeatedly remove some (non-transitive) ordering relation
from the plan, and check if all its completions are still correct. 24 Such ‘‘order
generalization’’ could be useful if one wants to execute steps of the plan in parallel
in order to improve the execution time. It could also be useful when one wants
to separate independent subparts of the plan to facilitate storage compactions in
case-based approaches (c.f. [20]).

23 Historical Note: Although the term ‘‘white knight’’ became popular after Chapman’s
work on tweak [2], Tate’s Nonlin was the first planner to use a white-knight clause to
specify weakest conditions for establishment and declobbering. Nonlin’s Q&A procedure
[33] says that a literal p is true at a step s in a partially ordered plan, if and only if (1) there
exists a step n0 such that n0 � n, and n0 asserts p, and (2) there does not exist a step n00

such that n00 deletes p, and (2.1) either n00 is unordered with respect to n or (2.2) there does
not exist any step n000 � n which deletes p without a subsequent node w � n000 asserting
it back again. According to this criterion, the plan in Fig. 4 is found to be correct. In
Nonlin, this check is done by ensuring that (1) for every branch of the plan that is coming
into s, the last node in the branch that gives a value to p must be asserting p and (2) no
branch parallel to s contains a node that deletes p. Unlike tweak, Nonlin did not deal
with partially instantiated plans (however, O-PLAN [3], a successor of Nonlin, does deal
with such plans).
24 Note that this involves removing existing orderings, without adding any new orderings.
Backstrom [1] shows that if we also allow arbitrary addition and deletion of orderings,
then the problem of finding the least constrained plan is NP-hard.
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Fig. 4. A ground partially ordered plan for which the white-knight clause is needed to
verify plan correctness (example due to Mark Drummond). Each step’s name is in a box,
with its preconditions and postconditions above and below the box. fin is the final situation,
and init is the initial situation.

4.2.2 White-Knight Declobbering in Goal Achievement

Although the white-knight declobbering clause is needed in the MTC, we pointed
out in Section 4.1.3 that white-knight declobbering is not required to guide plan
generation. In fact, Chapman’s own implementation of tweak [2, p. 361], as well
as many later partial order planners such as SNLP [22] do not use white-knight
declobbering clause in the goal-achievement procedure. However, as Chapman
remarks [2, p. 359], avoiding the white-knight declobbering clause during planning
means that the planner may terminate with somewhat more constrained plans. For
the example in Fig. 4, a planner such as SNLP that does not use the white-knight
declobbering clause will find one of two alternate plans:

P 1
w : a1 � b1 � a2 � b2;

P 2
w : a2 � b2 � a1 � b1:

Note that both of these plans are constrainments of the original plan. However,
since the objective of partial-order planning is only to find a ground operator
sequence, terminating with these constrainments in itself is not a problem, unless
there is a concomitant loss of efficiency in planning. 25

25 A related question is whether the MTC, and in particular the white-knight declobbering
clause, would be necessary in the goal achievement procedure if one wants to find optimal
partially ordered plans (for example, to ensure optimal execution time, c.f. [21]). At first
glance, it might seem that we must search in the space of all partially ordered plans to find
the optimal partially ordered plan, and thus the white-knight declobbering clause would be
necessary. However, this is not strictly required, since the unnecessary ordering constraints
can be removed from plans in polynomial time (Section 4.2.1). In particular, suppose
we defined the cost of each plan P to be the execution time that would be needed for
P if all unnecessary ordering constraints were removed. If this cost were used as part of
an admissible search strategy in a planner like SNLP [22] or even a total-order planner,
then the planner would terminate with some plan Pc such that Pc is a constrainment of
an optimal partially ordered plan Ps. We could then derive Ps from Pc by once again
removing all unnecessary ordering constraints from Pc.
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This gives rise to the question of whether the use of white-knight declobbering
will improve or reduce the efficiency of plan generation of a partial-order planner.
The use of white-knight declobbering as part of the goal-achievement procedure
does tend to increase the redundancy in the search space (in particular, the same
ground operator sequence may be considered in more than one search branch of the
planner)---but as we discuss in [14,15], whether or not such redundancy leads to
inefficiency depends on the tradeoffs between the search space redundancy vs. level
of commitment made by the planner. Thus using the white-knight declobbering
clause does not ipso facto make planning inefficient, as has been conjectured by
some researchers (c.f. [13]). An important issue is whether the planner implements
white-knight declobbering only through steps that already exist in the plan, or
whether it also allows new steps to be introduced as white-knights into the plan. In
[15], we describe a planner called MP-I, which allows white-knight declobbering
only via already existing steps. Our experiments show that this opportunistic
declobbering leads to significant performance improvements in certain domains.

4.3 Plan Generation with More Expressive Action Representations

One unfortunate result of the misinterpretation of the role of the MTC in partial-
order planning is the misconception that partial-order planning has more difficulty
in scaling up to a more expressive action representation than does total-order
planning. Not only did this belief slow down progress on planning with expressive
action representations, it also inhibited some learning researchers from basing their
work on partial-order planning frameworks [35,23,20]

As we noted earlier, planning can be seen as an iterative process, such that during
each iteration the planner takes a plan, evaluates it to see if it is a solution, and refines
it further (using the goal achievement procedure) if it is not. The argument about the
disadvantages of partial order planning for expressive action representation is based
on the complexity of each of these iterations. It starts with Chapman’s Intractability
Theorem, which shows that if conditional steps are allowed, then necessary truth is
NP-hard. 26 The argument goes that since a planner must compute necessary truth
each time it evaluates and refines a plan, the amount of time taken per iteration will
increase drastically in partial order planning.

This reasoning is fallacious, since, as we noted earlier, determining necessary truth
is not required in order to do partial-order planning. In particular, as we discussed
in Section 4.1, a sound and complete partial-order planner will not have to compute
necessary truth either for termination or for goal selection. Thus, the NP-hardness
result is clearly irrelevant. Indeed, Pednault [26,27] provides a formal theory of
partial-order planning in the presence of actions with conditional and quantified

26 However, as we discussed in Section 3.2.2, the NP-hardness depends as much on the
universal executability of these steps as it does on the conditionality of their effects.

23



effects, 27 and his theory has served as the basis for a popular implementation
called UCPOP [30], that takes only a polynomial amount of time per iteration.

Moreover, even if one were to compute necessary truth during goal selection and
termination, it is possible to devise partial-order planners in which each plan that
is generated is constrained in such a way that necessary truth can be evaluated in
polynomial time. One extreme example of this would be a planner that generates
only ground linear plans, but there are however other types of constrainments in
which the plans are partially ordered---for example, unambiguous constrainments
(c.f. [24]), and safe constrainments (c.f. [22,18])---which avoid the extreme of
searching with totally ordered plans. All of these attempt to reduce the cost of plan
evaluation and refinement by possibly increasing the search space size.

In order to determine the overall time complexity of the planner, what really counts
not the time per iteration, but the tradeoff between the time per iteration and the size
of the space searched (i.e., the number of iterations), since the time complexity is
the product of these two factors. In [18,19], we systematically classify the types of
operations (called ‘‘tractability refinements’’) used by various planners to ensure
tractable plan evaluation and analyze the tradeoffs offered by them.

Finally, it is also wrong to believe that planning itself is more difficult if conditional
operators are allowed. Erol et al. [7] have analyzed how the complexity of planning
varies under a wide variety of conditions, including whether or not function
symbols, negative preconditions, or delete lists (i.e., negative postconditions) are
allowed, whether or not the predicates are propositional (i.e., 0-ary), and whether
the planning operators are part of the input or fixed in advance. In all of these
cases, the presence or absence of conditional operators made no difference in the
complexity or decidability of planning.

5 Concluding Remarks

In this paper, we have discussed several misconceptions regarding the role of modal
truth and the Modal Truth Criterion (MTC) in planning. Along the way, we have
also clarified and corrected several problems with Chapman’s terminology.

First, we have presented the following results about modal truth and the modal
truth criterion:

(i) Contrary to Chapman’s statement, the principle of modal duality that is obeyed
by all classical modal logics is not obeyed in tweak-style plans. The lack of

27 Instead of checking for necessary truth, Pednault’s theory of planning concentrates
on adding a sufficient number of constraints (including steps, orderings, bindings, and
secondary preconditions) to ensure necessary truth in the resulting plan.
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duality between necessary truth and possible truth is related to the fact that
modal truth of a literal in a situation of a plan requires that the plan’s actions
be executable in order to produce that situation. To achieve modal duality, one
needs universally executable plans.

(ii) Even though necessary truth in plans can be determined in polynomial time
as stated by Chapman, the same statement does not hold for possible truth.
Instead, the problem of determining possible truth in plans is NP-hard. This
is important because checking possible truth has several applications in plan
projection [5] as well as plan generalization [16].

(iii) As stated by Chapman, the MTC is correct only as a criterion for necessary
truth (not as a criterion for possible truth). However, if we reinterpret it as
a criterion for modal conditional truth (i.e., modal truth conditional on plan
executability), then it is correct as a criterion for both necessary conditional
truth and possible conditional truth.

Second, we clarified the role of the MTC in plan generation vs. checking the
correctness of a given plan, by emphasizing the peculiar predicament of partial-
order planners: they search in the space of partially ordered partially instantiated
plans, but need completeness only in the space of totally ordered and totally
instantiated plans. We showed that misunderstandings in this regard have been the
root of several of the confusions regarding the role of the MTC:

(i) Sound and complete partial-order planning is possible as long as the goal
achievement procedure is based on a truth criterion that is consistent with
necessary and sufficient truth criterion for totally orderered plans.

(ii) Although the MTC provides a sufficient basis for partial-order planning, it
is not necessary for sound and complete partial-order planning. Specifically,
it is possible to devise sound and complete partial-order planners whose
termination, goal selection and goal achievement procedures do not depend
upon Chapman’s MTC.

(iii) Although the white-knight declobbering clause of the MTC is needed in order
to provide both necessary and sufficient conditions for ensuring truth of a
literal in a partially ordered plan, white-knight declobbering is not required
for partial-order planning. Several sound and complete partial-order planners
use demotion instead.

(iv) Although Chapman proved that is NP-hard to verify necessary truth in plans
whose steps have conditional effects, this does not necessarily imply (as has
been conjectured elsewhere) that partial-order planners are any worse off than
total-order planners in dealing with actions that have conditional effects. There
are two reasons for this: (1) partial-order planners do not have to compute
necessary truth in order to be sound and complete, and (2) even if a partial-
order planner does compute necessary truth, it can be sound and complete
while only generating plans for which necessary truth can be computed in
polynomial time.

25



Because of the wide impact of Chapman’s paper, it is important to correct any
misimpressions that may result from it. We hope readers will find this paper useful
for that purpose.
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Appendix: Proofs

Lemma 1 partial truth is co-NP-hard.

Proof. The proof is by reduction from the complement of 3SAT (satisfiability
with three literals per clause). In particular, let X = c1 + c2 + : : : + cm be a DNF
formula over the Boolean variables x1; x2; : : : ; xn, where each ci is a conjunct
of three literals ci = li1li2li3. We encode X as a plan P�

X and a ground atom
sat(yes; yes; yes), such that every executable completion of P �

X produces a final
situation containing sat(yes; yes; yes) iff X is a tautology. P �

X is the following
plan (see Fig. 5):

Initial state. P �
X ’s initial state s0 is the empty set.

Steps. For each Boolean variable xi, there are two steps, Seti and Unseti.
Seti has no preconditions, and has the following postconditions:

:xi(yes); xi(no);:xi(no); xi(yes):

Unseti has no preconditions, and has the following postconditions:

xi(yes);:xi(no); xi(no);:xi(yes):

Here, yes and no are constant symbols; the interpretations of xi(yes), xi(no),
xi(yes), and xi(no) are that the Boolean variable xi is true, not false, false, and
not true, respectively. Thus, the interpretations of Seti and Unseti are that they
make xi true and false, respectively.

There is a step Sep, which has no preconditions nor postconditions.28 Its only
purpose is to separate the steps Seti and Unseti (defined above) from the steps
Coni defined below.

For each conjunct ci = li1li2li3 in X , there is a step Coni. Corresponding to the
literals in ci, Coni has preconditions Li1; Li2; Li3, as follows. Each lij is either
xk or xk for some xk. If lij = xk, then Lij is xk(vij), where vij is a variable; if
lij = xk, then Lij is xk(vij). Coni has one postcondition: sat(vi1; vi2; vi3).

The interpretation of sat(yes; yes; yes) is that X is satisfied. For any other
constant symbols u; v; w, sat(u; v; w) has no particular interpretation. Thus, the
interpretation of Coni is that if ci = li1li2li3 is satisfied, then Coni asserts that X
is satisfied.

28 To prove his Intractability Theorem, Chapman also uses steps that have no preconditions
and postconditions. However, this raises the question of whether tweak can ever create
a plan such as P �

X . It is easy to modify P �
X so that tweak will construct it; here’s how.

For each step a of P�
X , add a new postcondition done(name(a)) (recall that name(a) is a

constant symbol). For each ordering constraint ‘a � b’ of P�
X , give b a new precondition

done(name(a)).
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There is one other step, Last, which has no preconditions and no postcondi-
tions. Last’s purpose is to provide a final step in the plan.

Constraints. O contains an ordering constraint ‘Seti � Sep’ for every Seti, an
ordering constraint ‘Unseti � Sep’ for every Unseti, and ordering constraints
‘Sep � Coni’ and ‘Coni � Last’ for every Coni. There are no other ordering
constraints. There are no codesignation constraints; i.e., D = ;.

Let P be any executable completion of P �
X , and � be the unique ground substitution

that satisfies P ’s codesignation constraints. In P , Sep’s input and output states
are a set s of ground atoms corresponding to truth values for all the xi’s. More
specifically, s = s1 [ s2 [ : : : [ sn, where each sk is either fxk(yes); xk(no)g
(meaning xk is false), or fxk(yes); xk(no)g (meaning xk is true).

The input state for each Coni consists of some ground atoms of the form sat(u; v; w),
plus the set s described above. Since Coni is executable, each precondition Lij

of Coni codesignates with an atom in Coni’s input state. In particular, since each
Lij is either xk(vij) or xk(vij) for some k, it follows that Lij� 2 sk . Thus, either
vij� = yes or vij� = no, depending on whether sk corresponds to a truth value for
xk that makes lij true, or one that makes lij false. Coni asserts sat(yes; yes; yes)
iff s corresponds to a set of truth values that make li1, li2, and li3 all true.

Thus, P produces a final state containing sat(yes; yes; yes) iff s corresponds
to a set of truth values that makes at least one of the conjuncts ci = li1li2li3
true. Since s may correspond to any assignment of truth values to x1; x2; : : : ; xn,
this means that all executable completions of P�

X produce final states containing
sat(yes; yes; yes) iff X = c1 + c2 + : : : + cm is true for all assignments of truth
values to x1; x2; : : : ; xn. 2

Theorem 2 possible truth is NP-hard.

Proof. Let Y = c1c2 : : : cm be a CNF formula over the Boolean variables
y1; y2; : : : ; yn, with three literals in each disjunctive clause ci. Let X = :Y .
Using de Morgan’s laws, in linear time we can express X as a DNF formula over
y1; y2; : : : ; yn, with three literals in each conjunct.

Suppose Y is unsatisfiable. Then X is a tautology, so from the proof of
Lemma 1, every executable completion of P�

X produces a final state contain-
ing sat(yes; yes; yes). Thus, no executable completion of P �

X produces a final
state in which :sat(yes; yes; yes) is true, so :sat(yes; yes; yes) is not possibly
true in P �

X ’s final situation.

Suppose Y is satisfiable. Then X is not a tautology, so from the proof of Lemma
1, there is an executable completion P of P �

X that produces a final state that does
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not contain sat(yes; yes; yes). Thus :sat(yes; yes; yes) is true in P ’s final state,
so it is possibly true in P �

X ’s final situation. 2

Remark. The above proof makes use of the duality between satisfiability
checking and tautology checking. However, it is also quite straightforward to
prove the theorem without using this duality, by constructing a plan Q�

Y and a
ground atom sat(yes; : : : ; yes) such that that some completion of Q�

Y produces
sat(yes; : : : ; yes) iff Y is satisfiable. Such a proof appears in [29].

Theorem 4 If the language L contains only finitely many constant symbols, then
necessary truth is co-NP-hard.

Proof. In the proof of Lemma 1, suppose we specify that the only constant
symbols in the language L are yes and no. Then every completion of P�

X is
executable, and thus sat(yes; yes; yes) is necessarily true in fin iff the formula X
is a tautology.

Even if L contains finitely many additional constant symbols, we can still make
sat(yes; yes; yes) necessarily true in fin iff the formulaX is a tautology, by adding
codesignation constraints to P �

X of the form v 6� c for each constant symbol c
other than yes or no, and each variable v appearing in the steps Con1 and Con2.
Thus Lemma 1 shows that if L contains only finitely many constant symbols, then
necessary truth is co-NP-hard even with ordinary ‘‘unconditional’’ steps. 2
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